
Extracted from:

React for Real
Front-End Code, Untangled

This PDF file contains pages extracted from React for Real, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2017 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

React for Real
Front-End Code, Untangled

Ludovico Fischer

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Development Editor: Brian P. Hogan
Copy Editor: Nicole Abramowtiz
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2017 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-263-3
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—August 2017

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Set Up the Test Framework
Let’s add some tests to the word counter project. We’ll start by installing a
test framework that runs our tests and reports the test results. We’ll use Jest2

because it offers an excellent out-of-the-box experience, but you can apply
the techniques you’ll learn to other test frameworks.

Navigate to the word counter project directory and install Jest as a develop-
ment dependency:

$ npm i --save-dev jest

Since your code uses JSX, you also need to transpile the code when you run
the tests. A Jest plugin called babel-jest ensures Jest transpiles the test code
with the Babel configuration it finds in the package root. Install the babel-
jest plugin as a development dependency:

$ npm i --save-dev babel-jest

We’ll use npm scripts to run our tests via the npm command. That way, you’ll
avoid conflicts between different versions of Jest in different projects.

The jest utility scans the directory for files with names that end in test or spec,
or files in a directory named __tests__. It then executes the tests they contain.
Since there’s no single dominant testing tool for JavaScript, the npm test com-
mand is the standard way to run tests in projects managed with npm. Open
package.json and modify the test entry in the scripts section in package.json to run
the local version of Jest with the npm test command:

wordcounter/package.json
"scripts": {

"test": "jest --watch",

The --watch flag lets Jest automatically re-run the tests when you edit a file.
To check that your setup works, run:

$ npm test

Jest reports the regular expression used to find test files. It automatically ignores
node_modules. Since you haven’t written any tests yet, Jest hasn’t run any tests.

No tests found
14 files checked.
roots: wordcounter - 14 matches
testMatch: **/__tests__/**/*.js?(x),**/?(*.)(spec|test).js?(x) - 0 matches
testPathIgnorePatterns: /node_modules/ - 14 matches

2. https://facebook.github.io/jest/

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/lfreact/code/wordcounter/package.json
https://facebook.github.io/jest/
http://pragprog.com/titles/lfreact
http://forums.pragprog.com/forums/lfreact

Once Jest finishes its run, it presents you with a prompt:

Watch Usage
› Press a to run all tests.
› Press p to filter by a filename regex pattern.
› Press t to filter by a test name regex pattern.
› Press q to quit watch mode.
› Press Enter to trigger a test run.

You don’t need to choose any of these options: by default, Jest will start
running new tests as soon as you add them.

Now that you have installed Jest and verified that you’re able to run it, let’s
write our first test.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/lfreact
http://forums.pragprog.com/forums/lfreact

