Extracted from:

Functional Web Development
with Elixir, OTP, and Phoenix

Rethink the Modern Web App

This PDF file contains pages extracted from Functional Web Development with
Elixir, OTP, and Phoenix, published by the Pragmatic Bookshelf. For more informa-
tion or to purchase a paperback or PDF copy, please visit http://www.prag-
prog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Raleigh, North Carolina


http://www.pragprog.com
http://www.pragprog.com

Th
Prae atic

I%%lgrammers

Functional Web Development
with Elixir, OTP, and Phoenix

Modern Web App

32.N0S 11X1)3 INOA

Lance Halvorsen
Series editor: Bruce A. Tate ‘
Development editor: Jacquelyn Carter



Functional Web Development
with Elixir, OTP, and Phoenix

Rethink the Modern Web App

Lance Halvorsen

The Pragmatic Bookshelf

Raleigh, North Carolina



Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt

VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Indexing: Potomac Indexing, LLC
Copy Editor: Liz Welch

Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-68050-243-5

Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2018


https://pragprog.com
support@pragprog.com
rights@pragprog.com

Getting Started with GenServer

GenServers are everywhere in Elixir code. Becoming proficient with GenServer is
one of the best things you can do to level up as an Elixir developer. It will
require some work on your part. You'll need to learn how client functions,
module functions, and callbacks work and interact.

But honestly, implementing a GenServer is pretty straightforward. We'll get lots
of practice in this chapter, so you’ll come out of it knowing your way around.

Let’s begin with a new file in the lib directory called lib/islands_engine/game.ex. This
will define a new module that will become our GenServer.
defmodule IslandsEngine.Game do

use GenServer
end

By adding the use GenServer line, we already have the beginnings of a functioning
GenServer.

The GenServer module defines the start_link/3 and start/3 functions for spawning
new processes. They take the name of the module to spawn, an initial state,
and an optional list of options.

Let’s try it out in the console, specifying our new Game module to spawn as
well as an empty map for the state.

start_link/3 will return a tagged tuple—{:ok, <PID>} on success and {:error, <reason>}
on failure. We can pattern match on the return and bind a variable to the
PID on success.

$ iex -S mix
iex> alias IslandsEngine.Game
IslandsEngine.Game

iex> {:0k, pid} = GenServer.start_link(Game, %{})
{:0k, #PID<0.104.0>}

Great! We're already able to start the server, and we've hardly written any code.

The GenServer Pattern

There’s a simple pattern at the heart of every bit of functionality we build in
a GenServer. It has three moving parts—a client function, a function from the
GenServer module, and a callback. The client function is the public interface,
the part that other processes will call. Within the client function we’ll call a

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/lhelph
http://forums.pragprog.com/forums/lhelph

°6

GenServer module function that does some internal work before it triggers a
callback. The callback is where we do the real work and return a response.

rocess : :

That’s the pattern: a client function wraps a GenServer module function, which
triggers a callback. We'll see it again and again, both in GenServers and more
generally in other OTP Behaviours.

Client functions hold no surprises. They're just everyday Elixir functions. We
can name them whatever we want, and they can take any number of arguments.

GenServer defines its own module functions, so we need to abide by their names
and arities. GenServer is specific about callback names and arities as well. We
can’t invent our own.

There’s a direct mapping between GenServer module functions and callbacks.
Calling GenServer.start_link/3 will always trigger GenServer.init/1. GenServer.call/3 calls
GenServer.handle_call/3, and GenServer.cast/2 maps to GenServer.handle_cast/2.

These three pairs of module functions and callbacks are the ones we’ll need
to build the GenServer for our game.

:gen_server Callbacks
The Erlang online documentation has a full list of :gen_server module
functions and callbacks.' In a slightly confusing twist, the docs
prepend the callback names with “Module:”. These module func-
< tions and callbacks handle everything from initializing a process
to cleaning up when a process terminates.

o

Don’t worry if this seems abstract at the moment. We’ll work through a
number of concrete examples in the next few sections.
Passing Messages

The simplest thing we can do with a GenServer is spawn a new server process
and send it a message. We've just seen how to spawn a new game server
process and bind the resulting PID to a variable. Once we have that PID, we

1. http://erlang.org/doc/man/gen_server.html#Module:code change-3

« Click HERE to purchase this book now. discuss


http://erlang.org/doc/man/gen_server.html#Module:code_change-3
http://pragprog.com/titles/lhelph
http://forums.pragprog.com/forums/lhelph

Getting Started with GenServer ¢ 7

can use Kernel.send/2 to send it a message. Once we have message passing
down, we can customize behavior based on that message.

Let’s see how this all works.

In a new IEx session, let’s start a new game process and send it the message
first:
iex> alias IslandsEngine.Game

IslandsEngine.Game

iex> {:o0k, game} = GenServer.start_link(Game, %{}, [1)
{:0k, #PID<0.128.0>}

iex> send(game, :first)
:first
20:49:47.773 [warn] IslandsEngine.Game #PID<0.128.0>
received unexpected in handle_info/2: :first

That worked, after a fashion. At least it didn’t crash the IEx process.

The use GenServer line we added to IslandsEngine.Game triggers a macro that com-
piles default implementations for all of the GenServer callbacks into our Game
module. That’s why we can actually start the ultra-minimal GenServer we cur-
rently have. We’'ll implement new clauses of these callbacks that override the
defaults to fit our needs as we customize the game server.

The warning we got is the compiler’s way of telling us we need to implement
a clause of the handle_info/2 callback to override the default and match the
message we sent.

Let’s go ahead and define a handle_info/2 clause in our game server that
matches the message first:

def handle_info(:first, state) do
I0.puts "This message has been handled by handle info/2, matching on :first.
{:noreply, state}

end

The GenServer module itself provides the second argument, state, when it triggers
the handle_info/2 callback. state represents the data structure that the individual
GenServer process holds. In this case, we defined it as an empty map when we
spawned the process.

The return tuple {:noreply, state} tells the GenServer Behaviour that we don’t need
to send a message back to the caller, and that the value bound to the state
variable should become the new state of the GenServer process. In this case,
we haven’t transformed the state, so it will still be an empty map.

Now we can recompile Game and try again:

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/lhelph
http://forums.pragprog.com/forums/lhelph

°8

iex> {:o0k, game} = GenServer.start_link(Game, %{}, [1)
{:0k, #PID<0.128.0>}

iex> send(game, :first)
This message has been handled by handle info/2, matching on :first.
:first

That’s definitely an improvement over our first try.

Now that we have the idea of sending messages to a GenServer process, let’s
add a little complexity.

Introducing Calls

More often than not, we're going to want a meaningful response when we
send a GenServer process a message. We might query the process’s state, or
we might want to see the result of a command we've sent it. This is where
calls come in.

GenServer calls are synchronous. They can return any arbitrary value to the
caller, and if the caller is waiting for a return, it will block until it gets one.
The GenServer callback that handles calls is handle_call/3. It’s similar to handle_info/2
in that it pattern matches for a message as its first argument.

It’s different from handle_info/2 in that it doesn’t accept messages sent directly
from other processes. Instead, it’s triggered whenever we call GenServer.call/2.

Let’s try this out. In lib/islands_engine/game.ex add a clause of handle_call/3 that looks
like this one. Our aim is to simply have it return the initial server state.
def handle call(:demo call, from, state) do

{:reply, state, state}
end

The key here is the first argument, :demo_call. This is the pattern that will
determine which clause of handle_call/3 to execute. We'll see where it comes
from shortly.

Don’'t worry about the other arguments. GenServer itself will provide them
internally.

The return value is different from the one we used in handle_info/2. It indicates
that we’ll be replying to the caller. The middle element is the actual reply,
and the third element is what we want the state of the GenServer process to be.

Now let’s go back to the IEx session we had going and recompile the Game
module. Then let’s start a new server with %{test: "test value"} as the initial state.
Make sure to pattern match on the return so we’ll bind the PID to the game
variable.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/lhelph
http://forums.pragprog.com/forums/lhelph

Getting Started with GenServer ¢ 9

iex> {:ok, game} = GenServer.start_link(Game, %{test: "test value"})
{:0k, #PID<0.130.0>}

Now invoke GenServer.call/3 with the PID and the atom :demo_call that we specified
as the first argument to our clause of handle_call/3. We should get back the state
we set when we started the process.

iex> GenServer.call(game, :demo_call)
%s{test: "test value"}

Success! We got the initial state back.

When we invoke GenServer.call/3, GenServer keeps track of the second argument
we passed, grabs the PID of the calling process, and gets the process’s state.
Then it invokes GenServer.handle_call/3 with those arguments, in order:

def handle_call(:demo _call, _from, state) do

_from is a tuple that contains the PID of the calling process, the IEx session
in our case. We could use it to send messages back to the caller, but we don’t
need to here, so we prepend it with an underscore.

Wait a Minute...
Our callback returned a tagged tuple, but we only saw the server
state in the console. That’s because the GenServer processed our
o callback’s return value internally in order to formulate a final reply
to the caller. It stripped out the :reply tag and used the final state
element to set the new state in the GenServer.

In order to expose this functionality as part of the public interface, we need
to define a client function to wrap GenServer.call/3 in lib/islands_engine/game.ex. The
only argument it needs is the server PID.

def demo call(game) do
GenServer.call(game, :demo call)
end

This should behave exactly the same as using GenServer.call/3 directly. Let’s try
it out. We'll need to recompile the Game module or else start a new session
and alias IslandsEngine.Game.

iex> {:ok, game} = GenServer.start_link(Game, %{test: "test value"})
{:0k, #PID<0.125.0>}

iex> Game.demo_call(game)
%{test: "test value"}

It returns the server state, which is just what we want.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/lhelph
http://forums.pragprog.com/forums/lhelph

°10

Introducing Casts

Casts work a lot like calls, so this section will seem familiar. The difference
is that casts are asynchronous; they don’t return a specific reply, so the caller
won’t wait for one.

Casts can increase throughput if synchronous processing becomes a bottle-
neck. But we should prefer calls to casts because they provide a kind of back
pressure, limiting the amount of work a process will accept at any given time
and preventing it from getting overloaded.

It's good to know how to use casts, though, so we’ll practice writing one here.
Let’s start by defining a handle_cast/2 callback.

We'll have it take a tuple containing the atom :demo_cast as well as a new value
we want to set in the state. Then we’ll use the Map.put/3 to set a new value for
the state’s :test key.

Casts don't reply to the calling process, so GenServer won't pass in a reference
to it into handle_cast/2.

def handle cast({:demo cast, new value}, state) do
{:noreply, Map.put(state, :test, new value)}
end

We'll return a tagged tuple as our handle_call/3 did. We won’t need to reply to
the caller, so it will only have two elements—:noreply and the new server state.

To set this up, let’s start up a new GenServer and call Game.call_demo/1 with the
PID to check the state we have:

iex> {:ok, game} = GenServer.start_link(Game, %{test: "test value"})
{:0k, #PID<0.130.0>}

iex> Game.demo_call(game)
%{test: "test value"}

We get the initial state back, which is what we expect.

Now let’s run the cast, followed by the call to return the state. If all goes well,
we should get the new state back:

iex> GenServer.cast(game, {:demo_cast, "another value"})
1ok

iex> Game.demo_call(game)
%{test: "another value"}

Indeed, the cast did work.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/lhelph
http://forums.pragprog.com/forums/lhelph

Getting Started with GenServer ® 11

We can wrap the GenServer.cast/2 call in a client function, and it should behave
the same as the bare GenServer.cast/2 call.

def demo cast(pid, new value) do

GenServer.cast(pid, {:demo cast, new value})
end

Now that we have the basics down, we can delete the handle_info/2, handle_call/3,
and handle_cast/2 callbacks as well as the demo_call/l and demo_cast/2 functions.
We won’t need them for the rest of our work here.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/lhelph
http://forums.pragprog.com/forums/lhelph



