
This extract shows the online version of this title, and may contain features (such
as hyperlinks and colors) that are not available in the print version.

For more information, or to purchase a paperback or ebook copy, please visit
https://www.pragprog.com.

Copyright © The Pragmatic Programmers, LLC.

https://www.pragprog.com

Add Filters to Make Charts Interactive
So far, we have a beautiful server-side rendered dashboard, but we haven’t
done anything yet that really leverages LiveView’s interactive capabilities. In
this section, we change that. We’ll give our users the ability to filter the survey
results chart by demographic, and you’ll see how we can re-use the reducers
we wrote earlier to support this functionality.

In this section, we’ll walk-through building out a “filter by age group” feature,
and leave it up to you to review the code for the “filter by gender” feature.

Filter By Age Group
It’s time to make the live component smarter. When it’s done, it will let users
filter the survey results chart by demographic data. Along the way, you’ll get
another chance to implement event handlers on a live component. All we need
to do is build a form for various age groups, and then capture a LiveView
event to refresh the survey data with a query.

We’ll support age filters for “all”, “under 18”, “18 to 25”, “25 to 35”, and “over
35”. Here’s what it will look like when we’re done:

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

It’s a pretty simple form with a single input. We’ll capture the form change
event to update a query, and the survey will default to the unfiltered “all”
when the page loads. Let’s get started.

Establish Test Data
To have enough data to play with, we’re going to build a simple seeds file that
will generate users, random demographics for them, and random ratings.
This data will let us put our interface through its paces much more easily
than if we had to build out random ratings by hand. We’re going to build a
rating_seeds.exs script much like our seeds.exs script.

First, we need to leave a comment telling our users how to use the file and
import or alias the modules our code will use.

interactive_dashboard/pento/priv/repo/rating_seeds.exs
mix run priv/repo/rating_seeds.exs

import Ecto.Query
alias Pento.Accounts.User
alias Pento.Catalog.Product
alias Pento.{Repo, Accounts, Survey}

Our code will use context functions to create database User, Demographic, and
Rating records. It will also need to make use of the schema information for
Product and User data. That’s a good start. Let’s create some users:

interactive_dashboard/pento/priv/repo/rating_seeds.exs
for i <- 1..43 do

Accounts.register_user(%{
email: "user#{i}@example.com",
password: "userpassword#{i}"}) |> IO.inspect

end

We create 43 users. We really don’t want an even number of them because
we don’t want the percentages to come out too clean. The exact number
doesn’t matter. To pass our changeset, we have to pass a valid email and a
valid password. We’ll point our email to example.com because we won’t acciden-
tally email known users that way. Our passwords are long enough to pass
the validation. Now, we’ll need a little setup data to use as we create demo-
graphics and ratings:

interactive_dashboard/pento/priv/repo/rating_seeds.exs
user_ids = Repo.all(from u in User, select: u.id)
product_ids = Repo.all(from p in Product, select: p.id)
genders = ["female", "male", "other", "prefer not to say"]
years = 1960..2017
stars = 1..5

• 4

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/liveview/code/interactive_dashboard/pento/priv/repo/rating_seeds.exs
http://media.pragprog.com/titles/liveview/code/interactive_dashboard/pento/priv/repo/rating_seeds.exs
http://media.pragprog.com/titles/liveview/code/interactive_dashboard/pento/priv/repo/rating_seeds.exs
http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

We have lists we’ll use in two ways. Our for comprehension will map over user
and product ids. We’ll pick random elements for the other lists. This data
won’t be truly representative of our real world data, but we really don’t care
at this point. We just want tangible changing values to use for our bar charts
and filters. Let’s create some demographics:

interactive_dashboard/pento/priv/repo/rating_seeds.exs
for uid <- user_ids do

Survey.create_demographic(%{
user_id: uid,
gender: Enum.random(genders),
year_of_birth: Enum.random(years)})

end

Our comprehension covers all users in the database. We’ll create demographics
for each user, picking a random gender and year setting. Finally, we’ll create
some ratings. Add this at the end of your seed file:

pento/priv/repo/rating_seeds.exs
for uid <- user_ids, pid <- product_ids do

Survey.create_rating(%{
user_id: uid,
product_id: pid,
stars: Enum.random(stars)

})
end

This for comprehension will cover each possible combination with one user
id and one product id. We create a rating with each of those values and a
random number of stars. Run the script with mix run priv/repo/rating_seeds.exs and
you’ll see a bunch of SQL flying by, denoting new values inserted into our
database. Load your /admin/dashboard page to satisfy yourself that there is more
data, and then we can move on.

Build the Age Group Query Filters
We’ll begin by building a set of query functions that will allow us to trim our
survey results to match the associated age demographic. We’ll need to surface
an API in the boundary code and add a query to satisfy the age requirement
in the core. The result will be consistent, testable, and maintainable code.

Let’s add a few functions to the core in product/query.ex. First, make sure you
alias Pento.Accounts.User and Pento.Survey.Demographic at the top of the Catalog.Prod-
uct.Query module. Then, add these functions:

interactive_dashboard/pento/lib/pento/catalog/product/query.ex
def join_users(query \\ base()) do

query

• Click HERE to purchase this book now. discuss

Add Filters to Make Charts Interactive • 5

http://media.pragprog.com/titles/liveview/code/interactive_dashboard/pento/priv/repo/rating_seeds.exs
http://media.pragprog.com/titles/liveview/code/interactive_dashboard/pento/lib/pento/catalog/product/query.ex
http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

|> join(:left, [p, r], u in User, on: r.user_id == u.id)
end

def join_demographics(query \\ base()) do
query
|> join(:left, [p, r, u, d], d in Demographic, on: d.user_id == u.id)

end

def filter_by_age_group(query \\ base(), filter) do
query
|> apply_age_group_filter(filter)

end

First off, two of the reducers implement join statements. The syntax is a little
confusing, so we’ll break it down. The lists of variables represent the tables
in the resulting join. In Ecto, it’s customary to use a single letter to refer to
associated tables. Our tables are p for product, r for results of surveys, u for
users, and d for demographics. So the statement join(:left, [p, r, u, d], d in Demographic,
on: d.user_id == u.id) means we’re doing:

• a :left join
• that returns [products, results, users, and demographics]
• where the id on the user is the same as the user_id on the demographic

We also have a reducer to filter by age group. That function relies on the
apply_age_group_filter/2 helper function that matches on the age group. Let’s take
a look at that function now.

interactive_dashboard/pento/lib/pento/catalog/product/query.ex
defp apply_age_group_filter(query, "18 and under") do

birth_year = DateTime.utc_now().year - 18

query
|> where([p, r, u, d], d.year_of_birth >= ^birth_year)

end

defp apply_age_group_filter(query, "18 to 25") do
birth_year_max = DateTime.utc_now().year - 18
birth_year_min = DateTime.utc_now().year - 25

query
|> where(

[p, r, u, d],
d.year_of_birth >= ^birth_year_min and d.year_of_birth <= ^birth_year_max

)
end

defp apply_age_group_filter(query, "25 to 35") do
birth_year_max = DateTime.utc_now().year - 25
birth_year_min = DateTime.utc_now().year - 35

query
|> where(

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/liveview/code/interactive_dashboard/pento/lib/pento/catalog/product/query.ex
http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

[p, r, u, d],
d.year_of_birth >= ^birth_year_min and d.year_of_birth <= ^birth_year_max

)
end

defp apply_age_group_filter(query, "35 and up") do
birth_year = DateTime.utc_now().year - 35

query
|> where([p, r, u, d], d.year_of_birth <= ^birth_year)

end

defp apply_age_group_filter(query, _filter) do
query

end

Each of the demographic filters specifies an age grouping and does a quick
bit of date math to date-box the demographic to the right time period. Then,
it’s only one more short step to interpolate those dates in an Ecto clause.
Notice that the default query will handle "all" and also any other input the
user might add.

We can use the public functions in our Catalog boundary to further reduce the
products_with_average_ratings query before executing it. Let’s update the signature
of our Catalog.products_with_average_ratings/0 function in catalog.ex to take an
age_group_filter and apply our three reducers, like this:

def products_with_average_ratings(%{
age_group_filter: age_group_filter

}) do
Product.Query.with_average_ratings()
|> Product.Query.join_users()
|> Product.Query.join_demographics()
|> Product.Query.filter_by_age_group(age_group_filter)
|> Repo.all()

end

This code is beautiful in its simplicity. The CRC pipeline creates a base query
for the constructor. Then, the reducers refine the query by joining the base
to users, then to demographics, and finally filtering by age. We send the final
form to the database to fetch results.

The code in the boundary simplifies things a bit by pattern matching instead
of running full validations. If a malicious user attempts to force a value we
don’t support, this server will crash, just as we want it to. We also accept any
kind of filter, but our code will default to unfiltered code if no supported filter
shows up.

Now, we’re ready to consume that code in the component.

• Click HERE to purchase this book now. discuss

Add Filters to Make Charts Interactive • 7

http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

Your Turn: Test Drive the Query
Before you run the query in IEx, open up lib/pento_web/live/admin/survey_results_live.ex
and comment out the call to the get_products_with_average_ratings/0 function in the
assign_products_with_average_ratings/1, like this:

def assign_products_with_average_ratings(socket) do
socket
|> assign(
:products_with_average_ratings,
Catalog.products_with_average_ratings())

end

We’ll come back in a bit and make the necessary changes to this reducer’s
invocation of the get_products_with_average_ratings function. For now, we’ll just
comment it out so that the code compiles and you can play around with your
new query.

Open up IEx with iex -S mix and run the new query to filter results by age. You
will need to create a map that has the expected age filter. You should see a
filtered list show up when you change between filters. Does your IEx log show
the underlying SQL that’s sent to the database?

Add the Age Group Filter to Component State
With a query filtered by age group in hand, it’s time to weave the results into
the component. Before we can actually change data on the page, we’ll need
a filter in the socket when we call update/2, a form to send the filter event, and
the handlers to take advantage of it. Let’s update our SurveyResultsLive component
to:

• Set an initial age group filter in socket assigns to "all"
• Display a drop-down menu with age group filters in the template
• Respond to form events by calling the updated version of our Catalog.prod-
ucts_with_average_ratings/1 function with the age group filter from socket
assigns

First up, let’s add a new reducer to survey_results_live.ex, called
assign_age_group_filter/1:

defmodule PentoWeb.Admin.SurveyResultsLive do
use PentoWeb, :live_component
alias Pento.Catalog

def update(assigns, socket) do
{:ok,
socket
|> assign(assigns)

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

|> assign_age_group_filter()
|> assign_products_with_average_ratings()
|> assign_dataset()
|> assign_chart()
|> assign_chart_svg()}

end

def assign_age_group_filter(socket) do
socket
|> assign(:age_group_filter, "all")

end

The reducer pipeline is getting longer, but no more complex thanks to our
code layering strategy. We can read our initial update/2 function like a storybook.
The reducer adds the default age filter of “all”, and we’re off to the races.

Now, we’ll change the assign_products_with_average_ratings/1 function in Admin.SurveyRe-
sultsLive to use the new age group filter:

def assign_products_with_average_ratings(
%{assigns: %{age_group_filter: age_group_filter}} =
socket) do

assign(
socket,
:products_with_average_ratings,
Catalog.products_with_average_ratings(
%{age_group_filter: age_group_filter}

)
)

end

We pick up the new boundary function from Catalog and pass in the filter we
set earlier. While you’re at it, take a quick look at your page to make sure
everything is rendering correctly.

Now, we need to build the form input.

Send Age Group Filter Events
We’re ready to add some event handlers to our component. We’ll need a div
to hold our form, like this:

<section class="ml-8">
<h2 class="font-light text-2xl">Survey Results</h2>
<div id="survey-results-component">

<div class="container">
...filters will go here...

</div>
</div>
<div id="survey-results-chart">

<%= @chart_svg %>

• Click HERE to purchase this book now. discuss

Add Filters to Make Charts Interactive • 9

http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

</div>
</section>

Inside this div, we’ll add the select input for the age group filter and default
the selected value to the @age_group_filter assignment. Go ahead and add this
to your template now:

interactive_dashboard/pento/lib/pento_web/live/admin/survey_results_live.html.heex
<div>

<.form
for={%{}}
as={:age_group_filter}
phx-change="age_group_filter"
phx-target={@myself}
id="age-group-form"

>
<label>By age group:</label>
<select name="age_group_filter" id="age_group_filter">
<%= for age_group <-

["all", "18 and under", "18 to 25", "25 to 35", "35 and up"] do %>
<option value={age_group} selected={@age_group_filter == age_group}>

<%= age_group %>
</option>

<% end %>
</select>

</.form>
</div>

LiveView works best when we surround individual form helpers with a full
form. We render a drop-down menu in a form using the form/14 function com-
ponent. Our approach here is a little different than what you’ve seen in this
book so far. We don’t need to track changes to data with the help of a
changeset, so we didn’t create one for our age group filter. As a result, we
didn’t create a form struct and add it to socket assigns. That is likewise not
needed here. Instead, we’re going with a simpler approach. We’re using a form
for an empty map, and providing some additional instruction to teach the
form how to behave. Let’s take a closer look at how the form function compo-
nent works with this empty struct.

Open up an IEx session with iex -S mix and key in the following:

iex> i %{}
Term

%{}
...
Implemented protocols:

Collectable, Enumerable, IEx.Info, ... Phoenix.HTML.FormData, ...

4. https://hexdocs.pm/phoenix_live_view/Phoenix.Component.html#form/1

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/liveview/code/interactive_dashboard/pento/lib/pento_web/live/admin/survey_results_live.html.heex
https://hexdocs.pm/phoenix_live_view/Phoenix.Component.html#form/1
http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

iex> i Pento.Catalog.change_product(%Pento.Catalog.Product{}, %{id: 1})
Term

#Ecto.Changeset<...>
Implemented protocols

IEx.Info, Inspect, Jason.Encoder, ..., Phoenix.HTML.FormData, ...

Notice that both our product changeset and an empty map implement the
Phoenix.HTML.FormData protocol. So, when we provide the empty map to the for
attribute of our form function component, the to_form/2 function is called under
the hood to convert the empty struct to a Phoenix.HTML.Form struct.

In addition to providing the empty map to our form, we’ve added a few other
attributes as well. We want the form events to target the live component itself
(rather than the parent live view), so we set the phx-target attribute to @myself.
The form also has the phx-change event binding, since we want to respond to
the event as soon as the user selects an age group, rather than forcing them
to click a submit button.

To respond to this event, add a handler matching "age_group_filter" to sur-
vey_results_live.ex, like this:

interactive_dashboard/pento/lib/pento_web/live/admin/survey_results_live.ex
def handle_event(

"age_group_filter",
%{"age_group_filter" => age_group_filter},
socket

) do
{:noreply,
socket
|> assign_age_group_filter(age_group_filter)
|> assign_products_with_average_ratings()
|> assign_dataset()
|> assign_chart()
|> assign_chart_svg()}

end

Now you can see the results of our hard work. Our event handler responds
by updating the age group filter in socket assigns and then re-invoking the
rest of our reducer pipeline. The reducer pipeline will operate on the new age
group filter to fetch an updated list of products with average ratings and
construct the SVG chart with that updated list. Then, the template is re-
rendered with this new state. Let’s break this down step by step.

First, we update socket assigns :age_group_filter with the new age group filter
from the event. We do this by implementing a new version of our
assign_age_group_filter/2 function:

• Click HERE to purchase this book now. discuss

Add Filters to Make Charts Interactive • 11

http://media.pragprog.com/titles/liveview/code/interactive_dashboard/pento/lib/pento_web/live/admin/survey_results_live.ex
http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

interactive_dashboard/pento/lib/pento_web/live/admin/survey_results_live.ex
def assign_age_group_filter(socket, age_group_filter) do

assign(socket, :age_group_filter, age_group_filter)
end

Then, we update socket assigns :products_with_average_ratings, setting it to a re-
fetched set of products for the given age group filter. We do this by once again
invoking our assign_products_with_average_ratings reducer, this time it will operate
on the updated :age_group_filter from socket assigns.

Lastly, we update socket assigns :dataset with a new Dataset constructed with
our updated products with average ratings data. Subsequently, :chart, and
:chart_svg are also updated in socket assigns using the new dataset. All
together, this will cause the component to re-render the chart SVG with the
updated data from socket assigns.

Now, if we visit /admin/dashboard and select an age group filter from the drop
down menu, we should see the chart render again with appropriately filtered
data:

Phew! That’s a lot of powerful capability packed into just a few lines of code.
Just as we promised, our neat reducer functions proved to be highly reusable.

• 12

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/liveview/code/interactive_dashboard/pento/lib/pento_web/live/admin/survey_results_live.ex
http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

By breaking out individual reducer functions to handle specific pieces of state,
we’ve ensured that we can construct and re-construct pipelines to manage
even complex live view state.

This code needs to account for an important edge case before we move on.
There might not be any survey results returned from our database query! If
you select an age group for which no product ratings exist, you’ll see the
LiveView crash with the following error in the server logs:

[error] GenServer #PID<0.3270.0> terminating
**(FunctionClauseError) ...

(elixir 1.10.3) lib/map_set.ex:119: MapSet.new_from_list(nil, [nil: []])
(elixir 1.10.3) lib/map_set.ex:95: MapSet.new/1
(contex 0.3.0) lib/chart/mapping.ex:180: Contex.Mapping.missing_columns/2
...
(contex 0.3.0) lib/chart/mapping.ex:139: Contex.Mapping.validate_mappings/3
(contex 0.3.0) lib/chart/mapping.ex:57: Contex.Mapping.new/3
(contex 0.3.0) lib/chart/barchart.ex:73: Contex.BarChart.new/2

As you can see, we can’t initialize a Contex bar chart with an empty dataset.
There are a few ways we could solve this problem. Let’s solve it like this. If
we get an empty results set back from our Catalog.products_with_average_ratings/1
query, then we should query for and return a list of product tuples where the
first element is the product name and the second element is 0. This will allow
us to render our chart with a list of products displayed on the x-axis and no
values populated on the y-axis.

Assuming we have the following query:

interactive_dashboard/pento/lib/pento/catalog/product/query.ex
def with_zero_ratings(query \\ base()) do

query
|> select([p], {p.name, 0})

end

And context function:

interactive_dashboard/pento/lib/pento/catalog.ex
def products_with_zero_ratings do

Product.Query.with_zero_ratings()
|> Repo.all()

end

We can update our LiveView to implement the necessary logic:

def assign_products_with_average_ratings(
%{assigns: %{age_group_filter: age_group_filter}} =
socket

) do
assign(

• Click HERE to purchase this book now. discuss

Add Filters to Make Charts Interactive • 13

http://media.pragprog.com/titles/liveview/code/interactive_dashboard/pento/lib/pento/catalog/product/query.ex
http://media.pragprog.com/titles/liveview/code/interactive_dashboard/pento/lib/pento/catalog.ex
http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

socket,
:products_with_average_ratings,
get_products_with_average_ratings(%{age_group_filter: age_group_filter})

)
end

defp get_products_with_average_ratings(filter) do
case Catalog.products_with_average_ratings(filter) do

[] ->
Catalog.products_with_zero_ratings()

products ->
products

end
end

Now, if we select an age group filter for which there are no results, we should
see a nicely formatted empty chart:

Nice! With a few extra lines of code, we get exactly what we’re looking for. We
have a beautifully interactive dashboard for just a few lines of code beyond
the static version. All that remains is to make this code more beautiful.

• 14

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/liveview
http://forums.pragprog.com/forums/liveview

