
Extracted from:

Testing Elixir
Effective and Robust Testing for Elixir and its Ecosystem

This PDF file contains pages extracted from Testing Elixir, published by the Prag-
matic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Testing Elixir
Effective and Robust Testing for Elixir and its Ecosystem

Andrea Leopardi
Jeffrey Matthias

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Series Editor: Bruce A. Tate
Development Editor: Jacquelyn Carter
Copy Editor: Molly McBeath
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-782-9
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—July 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Sending Real Requests
The simplest approach is to send the real request to the weather API in the
tests and assert on the response sent back by the API. The advantage of this
approach is that we test the real API directly, so if the API changes or if the
code that interacts with it changes, the tests will possibly fail. However, there
are some important disadvantages. First of all, our tests now depend on the
availability of a third-party system, which we don’t control. If the weather API
goes down or we don’t have access to the Internet, our tests will fail even if
the code is correct, which means that our tests are brittle and not repro-
ducible. Another disadvantage is that the API could change some returned
data that the test relies on without breaking the contract. In that case, the
test might start failing without signaling a real issue. The other main disadvan-
tage of this approach is that making real HTTP requests can cause problems in
many use cases. For example, the weather API we’re using is rate-limited (as
most APIs are in some way), which means that our tests could affect the rate
limiting of the API without providing a service to the users.

The disadvantages of the real requests approach can be mitigated in some
cases. For example, some third-party APIs provide a “staging” or “sandbox”
API with the same interface as the real API but with different behaviour.
For example, with a weather API like the one we’re using, the sandbox API
could always return the same weather data without actually talking to any
forecasting service. This would significantly reduce the load on the weather
API itself, allowing its developers to possibly lift the rate limiting in this
environment. However, many third-party APIs don’t provide anything like
this, so we have to come up with ways to avoid making real requests in
tests but still test the code that makes those requests. Let’s see the two
most common approaches next.

Building an Ad-hoc HTTP Server
The first approach we’re going to examine is building an ad-hoc HTTP server
we can send requests to that runs alongside our test suite. We’ll have control
over the server itself, so we’ll be able to control its behaviour and send as
many requests to it as we want during testing.

Let’s go back to the weather API use case. The weather API exposes a GET
/data/2.5/forecast endpoint that we hit from our application. This endpoint accepts
two parameters in the query string: q, which is the query, and APPID, which
identifies the credentials of our application. The endpoint returns a 200 OK
HTTP response with a JSON body containing information about the weather
forecast. Let’s build an HTTP server that mimics this API.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/lmelixir
http://forums.pragprog.com/forums/lmelixir

The Elixir ecosystem has established libraries to build HTTP servers. For now,
we’re going to use Plug.2 Plug is a library that provides a common interface
over different Erlang and Elixir web servers. A commonly used web server is
Cowboy.3 The first thing we’ll need is to add Plug and Cowboy to our depen-
dencies, which can be done by adding the :plug_cowboy dependency. We’ll only
add this dependency in the :test environment so that it won’t be shipped with
our application (assuming our application doesn’t use Plug and Cowboy itself):

integration_tests/soggy_waffle_actual_integrations/mix_with_plug_cowboy.exs
defp deps do

[
«other dependencies»
{:plug_cowboy, ">= 0.0.0", only: :test}➤

]
end

Now let’s define a Plug that exposes the endpoint. We’ll use Plug.Router, which
provides an intuitive DSL for writing simple HTTP endpoints:

integration_tests/soggy_waffle_actual_integrations/test/support/weather_api_test_router.exs
defmodule SoggyWaffle.WeatherAPITestRouter do

use Plug.Router

We need to manually import the assertions since we're not
inside an ExUnit test case.
import ExUnit.Assertions

plug :match
plug :dispatch
plug :fetch_query_params

get "/data/2.5/forecast" do
params = conn.query_params

assert is_binary(params["q"])
assert is_binary(params["APPID"])

forecast_data = %{
"list" => [

%{
"dt" => DateTime.to_unix(DateTime.utc_now()),
"weather" => [%{"id" => _thunderstorm = 231}]

}
]

}

conn
|> put_resp_content_type("application/json")
|> send_resp(200, Jason.encode!(forecast_data))

2. https://github.com/elixir-plug/plug
3. https://github.com/ninenines/cowboy

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle_actual_integrations/mix_with_plug_cowboy.exs
http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle_actual_integrations/test/support/weather_api_test_router.exs
https://github.com/elixir-plug/plug
https://github.com/ninenines/cowboy
http://pragprog.com/titles/lmelixir
http://forums.pragprog.com/forums/lmelixir

end
end

We have a server that exposes an endpoint that behaves exactly like the
weather one but performs some assertions on the incoming request. We need
to start the server. Do that in the setup callback of the SoggyWaffle.WeatherAPI test
case:

integration_tests/soggy_waffle_actual_integrati … st/soggy_waffle/weather_api_test_plug_cowboy.exs
setup do

options = [
scheme: :http,
plug: SoggyWaffle.WeatherAPITestRouter,
options: [port: 4040]

]

start_supervised!({Plug.Cowboy, options})
:ok

end

We started an HTTP server on port 4040 that we can use throughout the tests
by hitting http://localhost:4040/data/2.5/forecast. However, the real weather API URL
(https://api.openweathermap.org/data/2.5/forecast) is hard-coded in the SoggyWaffle.Weather-
API module. We need to make that configurable. We can use the same approach
we used when passing a module as an optional argument when we were
dealing with doubles. Let’s change SoggyWaffle.WeatherAPI:

integration_tests/soggy_waffle_actual_integrations/lib/soggy_waffle/weather_api.ex
defmodule SoggyWaffle.WeatherAPI do

@default_base_url "https://api.openweathermap.org"

@spec get_forecast(String.t(), String.t()) ::
{:ok, map()} | {:error, reason :: term()}

def get_forecast(city, base_url \\ @default_base_url)➤

when is_binary(city) do➤

app_id = SoggyWaffle.api_key()
query_params = URI.encode_query(%{"q" => city, "APPID" => app_id})
url = base_url <> "/data/2.5/forecast?" <> query_params➤

case HTTPoison.get(url) do
{:ok, %HTTPoison.Response{status_code: 200} = response} ->

{:ok, Jason.decode!(response.body)}

{:ok, %HTTPoison.Response{status_code: status_code}} ->
{:error, {:status, status_code}}

{:error, reason} ->
{:error, reason}

end
end

end

• Click HERE to purchase this book now. discuss

• 7

http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle_actual_integrati � st/soggy_waffle/weather_api_test_plug_cowboy.exs
http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle_actual_integrations/lib/soggy_waffle/weather_api.ex
http://pragprog.com/titles/lmelixir
http://forums.pragprog.com/forums/lmelixir

Now we can add a test for SoggyWaffle.WeatherAPI that hits the ad-hoc test server:

integration_tests/soggy_waffle_actual_integrati … st/soggy_waffle/weather_api_test_plug_cowboy.exs
test "get_forecast/1 hits GET /data/2.5/forecast" do

query = "losangeles"
app_id = "MY_APP_ID"
test_server_url = "http://localhost:4040"

assert {:ok, body} =
SoggyWaffle.WeatherAPI.get_forecast(
"Los Angeles",
test_server_url

)

assert %{"list" => [weather | _]} = body
assert %{"dt" => _, "weather" => _} = weather
«potentially more assertions on the weather»

end

This test will hit the test server every time it’s run and assert that the Soggy-
Waffle.WeatherAPI.get_forecast/1 function hits the correct endpoint. Writing our own
server from scratch works fine, but there’s room for improvement. For
example, in our test server we’re only asserting that the "q" and "APPID"
parameters are strings, but we’re not checking that they’re the same strings
as specified in the test. To do that, we would have to hard-code those strings
in the test server code, which in turn means that we’d have to build new test
servers to test different scenarios. There’s a tool called Bypass that helps in
this situation.

Bypass is a library that lets you define Plug-based servers on the fly with an
API similar to the one provided by Mox that we saw in the previous sections.
Let’s see how we can use it to improve our tests.4 First of all, add the library
to your dependencies in place of :plug_cowboy:

4. https://github.com/PSPDFKit-labs/bypass

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle_actual_integrati � st/soggy_waffle/weather_api_test_plug_cowboy.exs
https://github.com/PSPDFKit-labs/bypass
http://pragprog.com/titles/lmelixir
http://forums.pragprog.com/forums/lmelixir

integration_tests/soggy_waffle_actual_integrations/mix_with_bypass.exs
defp deps do

[
«other dependencies»
{:bypass, ">= 0.0.0", only: :test}➤

]
end

Bypass provides Bypass.expect_once/4 to set up an expectation for a request. To
use this function, we need to open a Bypass connection in our tests.

Do that in the setup callback:

integration_tests/soggy_waffle_actual_integrations/test/soggy_waffle/weather_api_test_bypass.exs
setup do

bypass = Bypass.open()
{:ok, bypass: bypass}

end

We return a bypass data structure from the test that will contain informa-
tion like the port the server was started on. We’ll pass this data structure
around in tests through the test context, and we’ll then pass it into the
functions we invoke on the Bypass module so that they know how to
interact with the test.

Now we can rewrite the test for get_forecast/1 using a Bypass expectation:

integration_tests/soggy_waffle_actual_integrations/test/soggy_waffle/weather_api_test_bypass.exs
test "get_forecast/1 hits GET /data/2.5/forecast", %{bypass: bypass} do

query = "losangeles"
app_id = "MY_APP_ID"
test_server_url = "http://localhost:4040"

forecast_data = %{
"list" => [
%{

"dt" => DateTime.to_unix(DateTime.utc_now()) + _seconds = 60,
"weather" => [%{"id" => _thunderstorm = 231}]

}
]

}

Bypass.expect_once(bypass, "GET", "/data/2.5/forecast", fn conn ->
conn = Plug.Conn.fetch_query_params(conn)

assert conn.query_params["q"] == query
assert conn.query_params["APPID"] == app_id

conn
|> Plug.Conn.put_resp_content_type("application/json")
|> Plug.Conn.resp(200, Jason.encode!(forecast_data))

end)

• Click HERE to purchase this book now. discuss

• 9

http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle_actual_integrations/mix_with_bypass.exs
http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle_actual_integrations/test/soggy_waffle/weather_api_test_bypass.exs
http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle_actual_integrations/test/soggy_waffle/weather_api_test_bypass.exs
http://pragprog.com/titles/lmelixir
http://forums.pragprog.com/forums/lmelixir

assert {:ok, body} =
SoggyWaffle.WeatherAPI.get_forecast(
"Los Angeles",
test_server_url

)

assert body == forecast_data
end

Bypass.expect_once/4 expects the specified request to be issued exactly once. The
function passed to it takes a conn data structure (a Plug.Conn struct) that we
can use to make assertions and to send a response. As you can see, this API
is similar to what Mox provides and allows us to have fine-grained control
over the test server and set different expectations in each test.

This “real requests” approach has the advantage of letting us send as many
real HTTP requests as we want during testing so that we can exercise the
code that interfaces with the real HTTP API as well as the HTTP client we’re
using. However, this approach has a disadvantage as well. When building
the test server and setting request expectations, we’re effectively copying what
the third-party API does, and by doing so we’re tying ourselves to a specific
behaviour of that API. If the weather API were to change and we were only
relying on test-server-based tests, we wouldn’t notice the change when running
the test suite. This is important to keep in mind, as there’s no clear and
straightforward solution for this problem. The only way around it is to period-
ically check that the weather API still behaves in the same way as the test
server. We can do that either manually or by running the code against the
real weather API once in a while.

In the next section, we’ll see an alternative approach to the same problem
that compromises on some things for the sake of making it easier to keep the
tests up to date.

Recording Requests with Cassettes
So far, we’ve explored two alternatives for testing the interaction with a third-
party API: issuing requests to the real API or building a test server to mimic
the third-party API during testing. In this section we’ll explore one last
approach, which consists of recording and replaying requests through a library
called ExVCR.5

The idea behind ExVCR is to issue a request to the real third-party API the
first time and record the response into a file called a cassette. Then, when we

5. https://github.com/parroty/exvcr

• 10

• Click HERE to purchase this book now. discuss

https://github.com/parroty/exvcr
http://pragprog.com/titles/lmelixir
http://forums.pragprog.com/forums/lmelixir

need to make that same request to the third-party API, ExVCR will replay
that request and return the response from the cassette without making any
real HTTP calls. By now you probably get why it’s called ExVCR: cassettes,
recording, replaying…. It makes sense.

The way ExVCR works is by creating implicit mocks of widely used Erlang
and Elixir HTTP clients, such as the built-in httpc or hackney.6 7 These mocks
intercept requests and record them if there’s no cassette for them, or replay
the requests from the respective cassette. This approach is limiting in cases
where you don’t use one of the HTTP clients supported by ExVCR, since
ExVCR won’t work. However, many applications do use clients supported by
ExVCR so it’s still worth exploring.

Let’s see how to change the SoggyWaffle.WeatherAPI test to make use of ExVCR.
Start by adding :ex_vcr as a dependency:

integration_tests/soggy_waffle_actual_integrations/mix_with_ex_vcr.exs
defp deps do

[
«other dependencies»
{:ex_vcr, ">= 0.0.0", only: :test}➤

]
end

The get_forecast/1 function uses HTTPoison as its HTTP client and HTTPoison
uses :hackney under the hood, so ExVCR will work. Now we need to call use
ExVCR.Mock to make the ExVCR DSL available in our tests and we’ll have to
use the ExVCR.Adapter.Hackney adapter.

integration_tests/soggy_waffle_actual_integrations/test/soggy_waffle/weather_api_test_ex_vcr.exs
use ExVCR.Mock, adapter: ExVCR.Adapter.Hackney

ExVCR provides a use_cassette/2 macro that takes a cassette name and a block
of code. Requests executed in the block of code are recorded to and replayed
from the specified cassette. Let’s rewrite the get_forecast/1 test to use use_cassette/2.

integration_tests/soggy_waffle_actual_integrations/test/soggy_waffle/weather_api_test_ex_vcr.exs
test "get_forecast/1 hits GET /data/2.5/forecast" do

query = "losangeles"
app_id = "MY_APP_ID"

use_cassette "weather_api_successful_request" do
assert {:ok, body} =

SoggyWaffle.WeatherAPI.get_forecast("Los Angeles")
end

6. http://erlang.org/doc/man/httpc.html
7. https://github.com/benoitc/hackney

• Click HERE to purchase this book now. discuss

• 11

http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle_actual_integrations/mix_with_ex_vcr.exs
http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle_actual_integrations/test/soggy_waffle/weather_api_test_ex_vcr.exs
http://media.pragprog.com/titles/lmelixir/code/integration_tests/soggy_waffle_actual_integrations/test/soggy_waffle/weather_api_test_ex_vcr.exs
http://erlang.org/doc/man/httpc.html
https://github.com/benoitc/hackney
http://pragprog.com/titles/lmelixir
http://forums.pragprog.com/forums/lmelixir

assert %{"list" => [weather | _]} = body
assert %{"dt" => _, "weather" => _} = weather
«potentially more assertions on the weather»

end

The first time this test is run, the request is issued against the real weather
API. After the weather API returns a response, that response is recorded into
a cassette called weather_api_successful_request. We use a descriptive and unique
name so that it won’t conflict with other cassettes. When the same test is run
again, no HTTP requests are made and the response recorded into the cassette
is returned to the HTTP client.

This approach differs from a test server because it focuses less on asserting
that the request is made correctly. The main goal of a cassette is to behave
exactly like the real third-party service without having to write code to emulate
that third-party service. The workflow is, in fact, simpler than the test server:
we just wrap our code with use_cassette/2 and go on about our day. However,
cassettes present a similar problem to the test server, which is that they can
get out of sync with the actual API. The solution for cassettes is somewhat
simpler though, since we only have to delete the stale cassette and rerun our
tests in order to re-create an up-to-date cassette.

To push the idea of keeping cassettes up to date further, we can always force
real requests to be made when running tests in a continuous integration (CI)
server. This way, we’ll avoid making real HTTP requests when developing on
our local machine, but the CI server (which usually runs much less frequently)
will make sure that the cassettes haven’t gotten out-of-date. This approach
heavily depends on what making a request to the real API implies. In the
weather API example, making real requests to /data/2.5/forecast is feasible: if it’s
only done in CI then it’s unlikely that we’ll negatively affect our rate limiting.
In other cases, making requests might cost money or break things, so making
real requests on every CI run might not be ideal. Furthermore, we usually
want CI to be reproducible and consistent between runs, and depending on
the availability of an external API might not be feasible.

Our favorite use case for cassettes is an external service that allows you to
set up and tear down resources through its API. For example, the weather
API could expose endpoints to register and delete named queries. Now, if we
wanted to test that we can query the forecast through a named query, we
could create the named query, test the appropriate functions, and delete the
named query all in the same test. In this use case, the cassette merely becomes
a “cache” of HTTP requests. Even when not using cassettes (such as in CI),

• 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/lmelixir
http://forums.pragprog.com/forums/lmelixir

the test would create and destroy all necessary resources to run the test,
leaving the external service’s state unchanged.

One important practice to keep in mind when working with ExVCR is to
never reuse cassettes. If you have two tests that make the same request, you
might be tempted to use the same cassette, but there’s a good chance that
at some point the request made in one of the two tests will change slightly
and then things won’t work anymore. If you use a different cassette in each
test, you’re guaranteed to not mess things up in this regard.

Let’s recap what we discussed in this section and see which approach is best
for different use cases.

• Click HERE to purchase this book now. discuss

• 13

http://pragprog.com/titles/lmelixir
http://forums.pragprog.com/forums/lmelixir

