
Extracted from:

Designed for Use, Second Edition

This PDF file contains pages extracted from Designed for Use, Second Edition,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2016 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Designed for Use, Second Edition

Lukas Mathis

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Michael Swaine (editor)
Potomac Indexing, LLC (index)
Nicole Abramowitz (copyedit)
Dave Thomas (layout)
Janet Furlow (producer)

For customer support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2016 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-160-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—April 2016

https://pragprog.com
support@pragprog.com
rights@pragprog.com

For Regula and Werner

Before We Start, a Word
This is a book for software managers, designers, and programmers. It’s not,
however, about management, visual design, or about code. Instead, it’s about
something much more important: the people who will be using your product.

The best product is of no consequence whatsoever if people don’t use it. You
can create the most beautiful, sturdiest, most elegant brush in the world, but
if nobody uses it to paint a picture, your work was in vain.

This book helps you make products—applications and websites—that people
will want to use.

There are two kinds of chapters in this book: “technique chapters” and “idea
chapters.” Each technique chapter explains a specific technique you can use
during the design process to make your product more user-friendly: story-
boarding, usability tests, or paper prototyping, for example. Technique
chapters explain concrete things you can do—the tools for your designer’s
tool belt.

Idea chapters, on the other hand, talk about ideas or concepts in more gen-
eral terms: how to write usable text, how realistic your designs should look,
when to use animations, and so on. Idea chapters explain things to think
about and consider while coming up with designs.

Technique Chapters
You can identify technique chapters by the cog on the first page.

All technique chapters follow the same basic outline. Since not all techniques
work well in all situations, I start by quickly outlining the kinds of situations
to which the technique applies. Then, I explain what the technique is and
how to use it. I end many of the technique chapters with a specific example
of the technique as applied to a fictional application we design as we proceed
through the book.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/lmuse2
http://forums.pragprog.com/forums/lmuse2

Since Twitter1 apps are our generation’s “Hello World” example application,
for the technique chapters we’ll design a Twitter app. To make things interest-
ing, we’re not designing a generic Twitter app. Our app is aimed at people
who have to update Twitter accounts for their companies. We call this fictional
application BizTwit.

Think of the technique chapters as recipes. It’s OK to read the book from start
to finish, but it’s also OK to delve into a specific topic. To that end, these
chapters are typically short and to the point, and they contain references to
further information both inside the book as well as in other books or on the
Internet.

Idea Chapters
While technique chapters introduce specific techniques and explain how to
apply them, idea chapters are less specific. They introduce concepts and are
mostly meant as sources of inspiration, rather than as strict rules. Some of
the idea chapters mention techniques or refer to technique chapters, but they
focus on more general concepts: How realistic should design be? How can we
use animation most effectively? What are modes? What can we learn from
video games?

You can identify idea chapters by the light bulb on the first page.

The ideas in these chapters may not always apply to the projects you’re
working on, because to some degree, people are unpredictable. When using
your products, they don’t always behave as you expect them to behave. And
they don’t always act as your rules predict.

To illustrate how people’s behavior is often different than predicted, let’s look
at an example outside of user interface design. Let’s assume you are concerned
with public health and safety. Where do you start? Given that tens of thou-
sands of cyclists are injured in traffic accidents every year, bicycle safety is
a good place to start.

Studies show that helmets help cyclists avoid injuries. So, getting people to
wear helmets should decrease the number of injuries, thereby increasing
people’s health and safety. The predicted outcome seems obvious: people get

1. In case you don’t know what Twitter is (possibly because you’re reading this book in
the year 2053, when brainjacking is how people communicate), Twitter (at http://twitter.com)
is a popular Internet service that people use to publish short text messages—tweets
—and subscribe to other people’s messages.

Before We Start, a Word • viii

• Click HERE to purchase this book now. discuss

http://twitter.com
http://pragprog.com/titles/lmuse2
http://forums.pragprog.com/forums/lmuse2

Typing Web Addresses

This book contains a lot of web addresses. Some of them are pretty long. Maybe you’re
reading a printed version of this book. Copying these long addresses from your book
to a web browser can be cumbersome. To make it a little bit easier, I’ve set up
http://designedforuse.net. This site contains a list of all the long addresses in this book.
Instead of typing a long address, type http://designedforuse.net, and click the link there.

into bike accidents, helmets prevent injuries, people who wear bike helmets
can avoid injuries. Conclusion: force people to wear helmets.

Over the years, a number of bike-helmet laws have been introduced. However,
these laws have not led to the predicted outcome.

In a 2009 study titled “The Health Impact of Mandatory Bicycle Helmet Laws,”2

Piet de Jong, from the Department of Actuarial Studies at the Macquarie
University in Australia, evaluated the effects of such laws. He discovered that
people really don’t like bike helmets, so much so that many of them simply
stop using their bikes altogether if they are forced to wear helmets while riding.

This outcome prompted de Jong to conclude that bike-helmet laws actually
have a negative effect on societal health as a whole. Yes, the laws prevent
some injuries, but for people who stop using their bikes entirely (and often
use their cars instead), the health consequences are overwhelmingly negative.

The bottom line is, no one bothered to test the laws before enacting them.
The people who were affected by the laws did something completely unexpected
by the people who designed the laws.

You will often observe the same effect when designing user interfaces. Design
changes don’t always create the result you intended and sometimes have the
opposite effect of what you expected.

When you read the ideas and rules in this book, I want you to keep this in
mind. You can do your best to come up with a usable solution; you can follow
all the rules and make what seem like obviously usable choices when
designing your user interface. But people will still surprise you by finding
creative ways of misunderstanding your application’s user interface, getting
lost on your website, behaving in unpredictable, seemingly illogical ways, and
being unable to do the very tasks that seem most obvious to you.

2. You can read the study at http://ssrn.com/abstract=1368064.

• Click HERE to purchase this book now. discuss

Idea Chapters • ix

http://designedforuse.net
http://designedforuse.net
http://ssrn.com/abstract=1368064
http://pragprog.com/titles/lmuse2
http://forums.pragprog.com/forums/lmuse2

Never assume you can apply a list of usability rules to a product and end up
with something usable. Use common sense when designing user interfaces,
but don’t rely on it. Know the rules, but break them if it improves your
product. The point is not to do exactly what I tell you to do but instead to
take my words as a source of inspiration—and to always test your designs.

How the Book Is Organized
The chapters in this book are presented roughly in the order in which they
are applicable during a typical design process, which I’ve divided into three
stages: research, design, and implementation.

Research
It’s tempting to jump right in and start designing a product as early as
possible (or perhaps even to start writing code if you’re a programmer).
In some cases, that may be OK, but it’s usually better to start by doing
a bit of research. Who is your product for? What problems do you want
to solve?

Design
Think about how to solve your audience’s problems. Design solutions and
then test them before writing any code. Fixing mistakes on paper is a lot
easier than fixing them in code.

From a design point of view, this stage is probably the most important in
the development process and, consequently, represents the largest part
of the book.

Implementation
Create the product, but keep testing it. Were your earlier assumptions
correct? Does your design work? How do people interact with it now that
it’s running? Is your implementation good enough? How does your product
deal with errors and real data? Does it perform well enough?

Deciding where to put idea chapters was more of a gut call than an exact
science. I’ve put these chapters where you’re likely to find them useful, but
most ideas are applicable most of the time. The organization is more pertinent
for technique chapters.

I introduce each technique chapter with a timeline that looks like this:

Before We Start, a Word • x

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/lmuse2
http://forums.pragprog.com/forums/lmuse2

This timeline should help you understand when a technique is most important
or most commonly used. The example timeline indicates a technique that is
typically used at the beginning of the “implementation” part of the product
development process. However, many techniques are useful at different times
of the design process. The timelines are there to help put techniques into
context, not as strict rules.

Now, this representation makes it look like the typical devel-
opment process is a linear affair that goes from research to
design to implementation. But typically, design processes are
iterative. Your development process is more likely to look a
bit like this circle.

However, since we often think of our development process as a number of
linear iterations on a product, the linear timeline should be easy enough to
understand.

Just One More Thing
Before we start, I should note that this book has its own web page.3 It offers
a book forum and an errata page. Of course, now that I type this, the errata
page is still empty, but by the time you read it, it probably won’t be.

And with that out of the way, let’s get started!

3. You can find it at http://www.pragprog.com/titles/lmuse2.

• Click HERE to purchase this book now. discuss

Just One More Thing • xi

http://www.pragprog.com/titles/lmuse2
http://pragprog.com/titles/lmuse2
http://forums.pragprog.com/forums/lmuse2

