
Extracted from:

Code in the Cloud
Programming Google AppEngine

This PDF file contains pages extracted from Code in the Cloud, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2010 Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-63-8

ISBN-13: 978-1-934356-63-0

Printed on acid-free paper.

B1.0 printing, March 17, 2010

Version: 2010-3-15

http://www.pragprog.com

MAKING CHAT PERSISTENT 54

General Data Management in the Cloud

Every cloud programming system provides some mechanism
for storing persistent data. The exact mechanics vary, but the
basic mechanism is almost always database-like. Some systems
give you access to a small, fast database system like MySQL.
Others, like AppEngine, provide a more flexible database-like
storage. We’ll only look at the AppEngine datastore, but there
are plenty of others, some of which can be used by AppEngine
programs.

thousand machines makes no difference. In my project at work, my code

runs on a network of thousands of machines every night. In that kind

of environment, sharing data using global variables is obviously ridicu-

lous: how can an assignment to a global variable in my Python program

be shared among a thousand machines? But because the system uses

persistent storage, it’s never a problem. When one part of the system

gets too slow, and starts to exceed its deadlines, I just change one con-

figuration file specifying the maximum number of machines that it can

use—and that’s all I need to do; it starts running on more machines,

which allows it to finish faster.

4.2 Making Chat Persistent

AppEngine has a custom data persistence system called datastore. Data-

store is very database-like, only it’s a lot easier to use for things like

Python objects. Unlike relational databases, datastore does not require

a strict schema; it’s very flexible and dynamic about how it lets you

store and manage persistent data. For retrieving things, it’s got a cus-

tom query language called GQL. GQL looks a lot like the SQL language

used to query conventional relational databases, but it’s customized for

working with datastore objects instead of relational tables.

Creating and Storing Persistent Objects

Datastore has a lot of options to let you do things in the way that makes

the most sense for your application. The basic datastore operations are

simple, and easy to use. As you use datastore more, you can start to

use more complex features as you need them. For now, we’ll stick with

the basics.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/mcappe

MAKING CHAT PERSISTENT 55

Datastore is pretty different from how you’d normally program in Python.

Normally, when you create a class in Python, you don’t need to declare

the fields of the class—you just assign values, and the fields are auto-

matically created. To use datastore, you have to give up some of that

flexibility. With datastore, you have to create models of your objects,

which tell the datastore what fields the object will have, and what types

of values they will have. (Actually, you can use the Python assign-as-

you-want style by using something called an expando model—but you

really shouldn’t: for a cloud application, you really should think out

your data well enough to define a proper model for it.)

Enough background. The easiest way to grasp datastore is by jumping

right in and looking at some code. As I said, in datastore, you need

to define a model to tell datastore about your objects. In Python, the

model is a class object that is a subclass of db.Model, and the fields

are defined by creating class-members of the model class. It’s a sort-of

awkwardly non-Pythonic way of doing things,

Below, I’ve taken the ChatMessage from our chat application, and turned

it into a datastore model:

Download persist-chat/pchat.py

class ChatMessage(db.Model):

user = db.StringProperty(required=True)

timestamp = db.DateTimeProperty(auto_now_add=True)

message = db.TextProperty(required=True)

def __str__(self):

return "%s (%s): %s" % (self.user, self.timestamp, self.message)

In datastore, a model defines a collection of named properties. You

define a type of storable object by creating a subclass of db.model, and

you define the properties of the object by assigning property types to

class variables in the class itself. Datastore supports a good collec-

tion of datatypes: strings, numbers, dates, lists, references and more. It

even lets you define your own, new types of storable objects. We’ll talk

more about the complex things you can do in Chapter 12, Advanced

Datastore, on page 154

Our chat message has three fields: a string containing the name of the

user that sent the message, another string containing the message, and

a timestamp that specifies when the message was sent. Each of those

fields is specified as a property.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/mcappe/code/persist-chat/pchat.py
http://www.pragprog.com/titles/mcappe

MAKING CHAT PERSISTENT 56

user The username is a simple string property. Every message must

have a username, so we specify that it can’t be null by providing

the keyword argument required=true. The value of a string property

in datastore is just a Python string, which cannot be longer than

500 characters.

time The time property is an instance of db.DateTimeProperty, which

specifies a property whose value is an instance of Python’s date-

time. For this property, we get to use an interesting capability of

the way that datastore represents properties using Python classes.

Every message should have a timestamp. But we don’t really want

to have to specify it when we create a message; we want the

timestamp to be now—that is, the time when the message was

received by the application. So what we do is use a special key-

word parameter auto_now_add for the property that says, “If this

property isn’t explicitly initialized when an instance of the model

type is created, then automatically initialize it to the current time.”

Because the property is represented by an instance of a Python

class, the class can define custom initializer parameters to pro-

vide type-specific functionality like auto_now_add, without requir-

ing any special primitives. As you’ll see when we look at advanced

datastore topics in Chapter 12, Advanced Datastore, on page 154,

you can define your own new property types, and provide your

own type specific extensions.

message Finally, we get to the content of the message. Like the user field,

message is a required string property. But in datastore, a string

can’t be more than 500 characters. Probably most chat messages

will be shorter than that—but not all of them. So instead of using

db.StringProperty, we use db.TextProperty. db.TextProperty is a string

that can be as long as you want—but because it’s an arbitrary

length, you can’t use it for sorting or searching.

Since we’ve created a model with the information needed to describe

its instances, we don’t have to provide our own initializer method now;

db.Model will auto-generate an initializer with keyword parameters and

types based on the property names and types we specified as fields of

the class.

We’ve got a storable class. How do we actually store values? It couldn’t

possibly be any easier: every object that is an instance of a subclass

of db.Model provides a zero-parameter method called put. If you call put

on an object, it’s stored in the datastore for your application. Here’s

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/mcappe

MAKING CHAT PERSISTENT 57

a modification of our post handler, which creates an instance of our

ChatMessage class, and then, at Ê, it stores the new chat message:

Download persist-chat/pchat.py

class ChatRoomPoster(webapp.RequestHandler):

def post(self):

chatter = self.request.get("name")

msgtext = self.request.get("message")

msg = ChatMessage(user=chatter, message=msgtext)

Ê msg.put()

Now that we've added the message to the chat, we'll redirect

to the root page,

self.redirect('/')

That’s it: calling put() on a model instance stores the instance in the

datastore, and makes it available for retrieval using queries.

Retrieving Persistent Objects

The last thing we need to know is how to retrieve what we’ve stored.

Below is the part of our GET handler that retrieves all of the mes-

sages from the datastore; the rest of the method—everything outside

of the part that retrieves the messages and prints them—is completely

unchanged.

Download persist-chat/pchat.py

Output the set of chat messages

Ê messages = db.GqlQuery("SELECT * From ChatMessage ORDER BY time")

for msg in messages:

self.response.out.write("<p>%s</p>" % msg)

Output the set of chat messages

messages = db.GqlQuery("SELECT * From ChatMessage ORDER BY time DESC LIMIT 20")

messages.reverse()

for msg in messages:

self.response.out.write("<p>%s</p>" % msg)

You retrieve things using a query language called GQL. As you can see

from the code, GQL looks a lot like SQL. The big difference is that GQL

isn’t querying over tables; it’s querying over model types. The query

from our chat room selects all instances of ChatMessage, not over all

rows of a table.

Depending on what you want to query, sometimes it’s clearer to use

a different style of GQL. You can omit the SELECT * FROM type part of

the query by calling the gql method of the model class. For example,

the GQL query from our code above could also be written ChatMes-

sage.gql("ORDER BY time").

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/mcappe/code/persist-chat/pchat.py
http://media.pragprog.com/titles/mcappe/code/persist-chat/pchat.py
http://www.pragprog.com/titles/mcappe

MAKING CHAT PERSISTENT 58

Datastore Versus Relational Databases

At this point, the difference between datastore models and
relational database tables might sound small. After all, every
instance of ChatMessage is exactly the same: they’ve got a set
of typed fields, which look a lot like the columns in a relational
database. At a first glance, it looks pretty much like a relational
database that uses stylized Python classes to create its tables
instead of SQLCREATE TABLE statements.

That is, in fact, very much not the case. Datastore has a much
richer range of data types and data structures than a rela-
tional database. In datastore, we can have properties of a
model that have list types, where the elements of the list can
be any storable value, and where you can use the elements
of the list as a part of a GQL query. You can have reference
properties, which are used to describe non-containment links
between objects. You can have hierarchical, tree-structured
datatypes, and queries that traverse the tree. (That’s not to say
that datastore is better than a relational database; just differ-
ent. For example, relational databases have much better per-
formance on joins than datastore. But datastore lets you use
familiar data structures that make sense in your application in a
simple, scalable way.)

Using GQL Queries to Improve Chat

One problem that our chat application has is its verbosity. Right now,

each time you refresh your display of the chat, you get the entire chat.

After a conversation has been going on for a while, that gets to be very

long, and the part that you’re interested in is the most recent part of

the chat, which is all the way at the bottom of the page.

People using a chatroom don’t want to have to constantly scroll through

messages they’ve seen before. Most of the time, they know what was

said before, and only want to see the latest messages. For example,

they might want to only see the last 20 messages in the chatroom, or

they might want to only see messages posted within the last 5 minutes.

Using GQL, it’s downright trivial to fix the verbosity issue by adding

clauses to our GQL query. To see the 20 most recent messages, we can

add a LIMIT clause, and to see the messages from the last 5 minutes, we

can add a WHERE clause.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/mcappe

MAKING CHAT PERSISTENT 59

Of course, we don’t want to restrict our users so that they can only

see one of those concise views; when they first enter a new chat, they

may want to see the entire history. So we’ll add new handlers to our

application for the two new cases. We’ll leave the full chat where it was,

and add two new URLs for time-limited and count-limited short views.

Adding the Count-Limited View

First, let’s add the counted view. That’s very easy: GQL queries have

a LIMIT clause, which specifies a maximum number of results for the

query. For example, when you indicate LIMIT 20, you get the first 20

values that match the query in the specified sort order. Since we want

to get the 20 most recent query results, we need to make sure that the

results we want are the first ones. We do that by sorting in order by

time, with the most recent times first.

The counted view is implemented using a RequestHandler, which is exactly

the same as ChatRoomPage, except for two lines. I copied ChatRoom-

Page, and renamed the copy to ChatRoomCountViewPage. The modified

get method is shown below:

Download persist-chat/pchat.py

class ChatRoomCountViewPage(webapp.RequestHandler):

def get(self):

self.response.headers["Content-Type"] = "text/html"

self.response.out.write("""

<html>

<head><title>MarkCC's AppEngine Chat Room (last 20)</title>

</head>

<body><h1>Welcome to MarkCC's AppEngine Chat Room</h1>

<p>(Current time is %s; viewing the last 20 messages.)</p>

""" % (datetime.datetime.now()))

Output the set of chat messages

Ê messages = db.GqlQuery('SELECT * From ChatMessage ORDER BY time '

'DESC LIMIT 20')

Ë messages.reverse()

for msg in messages:

self.response.out.write("<p>%s</p>" % msg)

self.response.out.write("""

<form action="/talk" method="post">

<div>Name: <textarea name="name" rows="1" cols="20">

</textarea></div>

<p>Message</p>

<div><textarea name="message" rows="5" cols="60"></textarea></div>

<div><input type="submit" value="Send ChatMessage"/></div>

</form>

</body>

</html>""")

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/mcappe/code/persist-chat/pchat.py
http://www.pragprog.com/titles/mcappe

MAKING CHAT PERSISTENT 60

There are only two real changes:

Ê In the query itself, we’ve specified the sort order as descending, so

that the 20 most recent posts to the chat will be the first ones in

the query result (ORDER BY time DESC), and limited it to 20 results

(LIMIT 20)

Ë The query produced the messages in descending order by time,

with the most recent message first. When our users read a chat,

that’s not the order that they’re going to expect: when you’re read-

ing a chat, you want the chat to appear in natural order, which

means that the most recent message should be at the end. So we

need to reverse the order of the query result before we print it.

Adding the time-limited view

Adding in a view that selects a sub-part of the chat based on time

is more complicated than the count-limited view. It requires adding a

comparison to the query—and it runs into two of the biggest limitations

of GQL:

1. In GQL queries, you can’t do any computation. You can’t use expres-

sions like x+1. Every computation needs to be done in Python code

outside of the query, and then inserted into the query string.

2. You can’t compare things in a query directly to literal values. You

can only do comparisons between queried values and parameters.

To really get the sense of those two restrictions, we need to see some

parameters in GQL. A parameter is basically a slot in a query where

we can inject a Python value. For example, we could have written the

number-limited view as ChatMessage.gql("ORDER BY time DESC LIMIT :1",

20). “:1” is a parameter for the query, which will be replaced by the

first unnamed parameter following the query string—in this case, 20.

Parameters can be either numbered or named. If they’re named, spec-

ify their value using a named parameter to the Python call. Again, for

example, we could use a named parameter in the number-limited view

query like ChatMessage.gql("ORDER BY time DESC LIMIT :limit", limit=20).

To do the time-limited view, we have to do some time arithmetic. If we

want to show the messages posted in the last five minutes, we’ll say

that in the query as something like, “All messages whose timestamp is

larger than now minus five minutes.”

It’s easy to say “now minus five minutes” in Python using the datetime

module: datetime.now() - timedelta(minutes=5). To use it in a query, we

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/mcappe

MAKING CHAT PERSISTENT 61

just need to inject it using a parameter. So we wind up with: ChatMes-

sage.gql("WHERE timestamp > :fiveago ORDER BY time", fiveago=datetime.now()

- timedelta(minutes=5)). And that’s all it takes: just copy ChatRoomPage,

rename it to ChatRoomTimeViewPage, and replace the query with the

fragment above, and you’ve got it.

Of course, to be able to see and test this, we need to modify the WSGIAp-

plication to direct queries to our two limited views. Our application now

has three views: the full conversation view, the time-limited view, and

the count-limited view:

Download persist-chat/pchat.py

chatapp = webapp.WSGIApplication([('/', ChatRoomPage),

('/talk', ChatRoomPoster)

('/limited/count', ChatRoomCountViewPage),

('/limited/time', ChatRoomTimeViewPage)])

We don’t yet have a nice way of moving between the views, and their

implementations have a silly amount of duplication. We’ll look at how

to clean that up in the next chapter—but for now, we’ve got something

that works.

Resources

The Python Datastore API. . .
. . . http://code.google.com/appengine/docs/python/datastore/

The official Google datastore documentation.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/mcappe/code/persist-chat/pchat.py
http://code.google.com/appengine/docs/python/datastore/
http://www.pragprog.com/titles/mcappe

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Code in the Cloud’s Home Page

http://pragprog.com/titles/mcappe

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/mcappe.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/mcappe
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/mcappe
www.pragprog.com/catalog

