
Extracted from:

Code in the Cloud
Programming Google AppEngine

This PDF file contains pages extracted from Code in the Cloud, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2010 Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-63-8

ISBN-13: 978-1-934356-63-0

Printed on acid-free paper.

B1.0 printing, March 17, 2010

Version: 2010-3-15

http://www.pragprog.com

INTRODUCING GWT 122

your program. This is particularly valuable in an environment like

the cloud, where it’s harder to debug your program. You can’t just

fire up a debugger and probe it. You can’t add print statements

to find where things went wrong. Anything that helps you catch

problems ahead of time can be a huge time-saver.

Style. As you’ll see later in this chapter, developing a cloud application

in Java has a very different style and structure from Python. For

some developers, the style of Java development in AppEngine can

be much more comfortable than Python.

Tools. Google released a set of plugins for the free Eclipse IDE for build-

ing Java/GWT AppEngine services and applications. Eclipse is an

absolutely amazing tool, and the AppEngine plugins make every-

thing easier. (You can use Eclipse with Python, but there’s no spe-

cific AppEngine support, so it ends up being pretty painful.)

In this chapter, we’ll take a look at developing cloud applications using

GWT. We’ll do that by taking our chat application, and porting it to

Java/GWT. We’ll go through a compressed version of our journey so

far, looking at how to do what we’ve already done, this time in Java.

9.1 Introducing GWT

There’s one reason for using Java that completely outweighs all of the

others: GWT. GWT is amazing. It lets you write your entire cloud appli-

cation in Java. The server side is compiled in the usual way for Java:

compiled into Java bytecodes that are executed on the JVM. On the

server side, it’s a nice framework, but it’s not particularly special. But

then there’s the client: GWT lets you write your client as a Java pro-

gram. You write the client in Java almost like a traditional GUI appli-

cation: you build a UI from a collection of widgets using layout man-

agers, attach event handlers, and so on—absolutely typical GUI code.

But GWT translates that GUI code into HTML and JavaScript: instead of

compiling Java to Java bytecodes, it compiles Java to JavaScript source

code, which then executes on the client. And for all of the AJAX stuff

in which the client and server needs to communicate, GWT can gen-

erate remote procedure calls. It’s not a totally automatic process, but

it’s vastly easier and more robust than writing JavasScript AJAX code

manually. (To be honest, my first reaction when I heard about this was,

“They’re out of their minds; that’s ridiculous!”. Which goes to show you

why I’m not rich and famous.)

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/mcappe

INTRODUCING GWT 123

Because of the way it’s set up, building an application in GWT is dif-

ferent from what we did in Python with webapp. Our first example is

going to have a beautiful UI; we don’t need to wait to get to how to set

up templates and floats with CSS—we’ll just dive right in, and let GWT

do what it does best.

Programming in GWT is, in many ways, much more like program-

ming an application with a traditional desktop GUI framework. You

define your UI almost the same way you would for a traditional desktop

app, and GWT takes care of generating most of the HTML, CSS, and

JavaScript that’s necessary for making that app work. Most of Google’s

recent applications (including things like Wave) are implemented using

GWT.

To start looking at GWT, download the AppEngine SDK for Java. I’m

not going to walk through it in detail, because it’s basically the same

process that you used to download the Python SDK in Chapter 2, Get-

ting Started, on page 18. In addition to the basic framework, you can

also install a set of plugins for Eclipse, which provide an excellent pro-

gramming environment. I highly recommend downloading Eclipse and

the AppEngine plugins. The ability to use Eclipse for AppEngine devel-

opment is one of the best reasons for working with Java! Eclipse is free,

and it’s really easy to set up. The downside to GWT is that there’s a lot

of metadata; that is, a lot of extra files that tell GWT what to do with

the Java source, things like which parts to compile to JavaScript for the

client, which parts to set up as a servlet bundle for the server, and so

on. Maintaining all of those files can be painful, but the Eclipse tooling

is a huge help. You can program in GWT without using Eclipse, but you

really shouldn’t. From here on, I’m going to assume that you’re using

Eclipse with the GWT plugins.

GWT constitutes a very different approach to building a cloud applica-

tion. In Python and webapp, everything was focused on the server. Of

course, we built client UIs, but we did it by focusing on what the server

needed to do to generate the UI on the client. The process centered on

building request handlers, and the CSS and templates that the request

handlers needed. GWT is almost exactly opposite: in GWT, you focus

on the client. You build a client UI using a framework that looks like a

traditional client application. When your client needs something from

the server, you make a remote procedure call (RPC) to invoke it; GWT

takes care of most of the work of turning that RPC into an AJAX call.

With that in mind, let’s start building a GWT application.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/mcappe

GETTING STARTED WITH JAVA AND GWT 124

9.2 Getting Started with Java and GWT

To begin, we’ll look at something like a basic “Hello World” program.

The GWT tools for Eclipse automatically build a project skeleton, which

is a basic GWT hello-world; so instead of writing our own, we’ll just

let Eclipse do it, and walk through the pieces, seeing how it’s all put

together. In Eclipse, select “New” from the “File” menu. In the dialog

that comes up, pick “New Web Application Project”. Then fill in the

resulting dialog box with a project name, and the name of the Java

package you want to use for your Java code. I selected “HelloChat”

as the project name, and “com.pragprog.aebook.hellochat” for the Java

package name.

The starter application sets up a page that prompts users for their

name; when users enter their names, it pops up a dialog box saying

hello to them.

The Structure of a GWT Application

A GWT application consists of a set of modules. A module is a GWT

package consisting of Java code, JavaScript, HTML files, images, data

definitions, and whatever else you need in a web application. The direc-

tory structure that you get when you create a GWT/AppEngine project

in Eclipse is based on the structure of the GWT module that it imple-

ments.

To begin with, let’s look at that directory structure. You can see the

structure in the Eclipse package browser in Figure 9.1, on the follow-

ing page. Inside the AppEngine project, there are a collection of GWT

libraries, plus two main components: a source directory named src, and

a target directory named war. “war” stands for “web archive”: the deploy-

able application that you upload to app-engine is a war file.

The source directory itself is also divided into three parts: a module

declaration, a package for the client-side Java code, and a package for

the server-side Java code.

The server package, com.pragprog,aebook.hellochat.server, is deceptively

simple, consisting of one, almost trivial source file, because GWT is

going to automatically generate the server-side plumbing.

The client side has a three files. One of them, HelloChat.java is the main

body of our application. The other two, GreetingService.java and Greet-

ingServiceImpl.java are part of the setup for a GWT remote procedure call.

These files contain the declarations that GWT needs in order to allow

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/mcappe

GETTING STARTED WITH JAVA AND GWT 125

Figure 9.1: The GWT project directory structure in Eclipse

us to do AJAX client/server applications without explicitly setting up

XMLHttpRequests. We’ll look at how those files work in Section 9.3, RPC

in GWT , on page 132.

The way that these pieces fit together is determined by the GWT module

declaration.

Download workspace/HelloChat/src/com/pragprog/aebook/hellochat/HelloChat.gwt.xml

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE module PUBLIC "-//Google Inc.//DTD Google Web Toolkit 1.7.1//EN"

"http://google-web-toolkit.googlecode.com/.../gwt-module.dtd">

Ê <module rename-to='hellochat'>

<inherits

Ë name='com.google.gwt.user.User'/>

<inherits

Ì name='com.google.gwt.user.theme.standard.Standard'/>

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/mcappe/code/workspace/HelloChat/src/com/pragprog/aebook/hellochat/HelloChat.gwt.xml
http://www.pragprog.com/titles/mcappe

GETTING STARTED WITH JAVA AND GWT 126

<entry-point

Í class='com.pragprog.aebook.hellochat.client.HelloChat'/>

</module>

Ê The fundamental unit of code in GWT is a module. A module

consists of a collection of things: Java code; resources like CSS,

HTML, or image files; and GWT customizations, like Java to JavaScript

compiler extensions. This line declares the module that will con-

tain our application. The "rename" element is part of GWT’s URL

handling: GWT will tell the server to set this module up at a URL

path ending with “hellochat”.

Ë Modules in GWT can inherit things from other modules. It works

pretty much like object-oriented inheritance. Our application is

a sub-module of com.google.gwt.user.User, which is the standard

module for an application with a user interface. Most of the basic

functionality of GWT—the UI widgets, the remote procedure call

plumbing, and the basic server-side servlet infrastructure—are

inherited through this declaration.

Ì Part of the reason GWT defines modules in addition to using class

inheritance in the Java code is because there are a lot of resources

in a GWT module besides code. A module can include things like

CSS. The inherit statement pulls in the CSS files that define the

look of the UI widgets in our application. We can change the look

of our application by inheriting from a different style module.

Í The Java code for a GWT application starts with an entry point.

An entry point is, pretty much, the GWT GUI equivalent of a main

function. In the module file, you declare entry points for code you

want executed in your GWT application. In this case, the entry

point is the class HelloChat.

Setting Up the UI in GWT

Within a GWT module, the user interface frame is defined by an HTML

file. The HTML file isn’t considered source code, so it doesn’t get put into

the src directory. It’s a static resource: a file that contains information

that will be used by the code. So the HTML file ends up in the war

directory. Let’s take a look at its contents:

Download workspace/HelloChat/war/HelloChat.html

<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN">

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/mcappe/code/workspace/HelloChat/war/HelloChat.html
http://www.pragprog.com/titles/mcappe

GETTING STARTED WITH JAVA AND GWT 127

<html>

Ê <head>

<meta http-equiv="content-type" content="text/html; charset=UTF-8">

<link type="text/css" rel="stylesheet"

href="HelloChat.css"/>

<title>Web Application Starter Project</title>

<script type="text/javascript" language="javascript"

Ë src="hellochat/hellochat.nocache.js"></script>

</head>

<body>

<h1>Hello World</h1>

Ì <table align="center">

<tr>

Í <td colspan="2" style="font-weight:bold;">Please enter your name:</td>

</tr>

<tr>

Î <td id="nameFieldContainer"></td>

<td id="sendButtonContainer"></td>

</tr>

</table>

</body>

</html>

Ê The HTML frame file is a standard HTML file. It starts off with the

usual HTML stuff: the doctype declaration, the head block with

the usual meta-tags.

Ë This is the most important line of the entire file! What makes the

HTML file into a GWT application frame is this include line. It

pulls in the JavaScript file that’s going to be generated by GWT,

containing all of our application code.

Ì As I’ll explain in more detail later, you can do layout in the UI

using either static structures defined in the HTML file, or dynamic

structures defined in Java code. For our application, that HTML

frame defines a static structure for the main UI page. The easiest

way to do that is using HTML tables. (We could also do it using

CSS floats, as we saw in the Python code, but if we want to do

dynamic layout, it would be much better to let GWT take care of

it.) So we set up a two-column table: one column for the text entry

box, and one for the “send” button.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/mcappe

GETTING STARTED WITH JAVA AND GWT 128

Í The HTML static structure can include static content as well as

static structure. As usual, if we can separate things like static

content from program logic, we should. So we use the static frame

here to insert a title line, and use the HTML table layout controls

to make it spans both columns of the layout.

Î Now we get to something interesting. What we’re doing here is

creating an empty box in the UI. The <td> tag creates a box in the

HTML layout, but it’s empty—there’s nothing inside of the tag. In

our Java code, we’ll insert something, referencing it using its id=

tag. We create two boxes this way: one for the text box, and one

for the button.

Now we can get to some code. As we saw above in the module declara-

tion, the application has one entry point. The full entry point method

is pretty long; it incorporates both the creation of the UI elements, set-

ting up event handlers, and setting up remote procedure calls for the

client/server communication. Let’s look at it in pieces. We’ll start with

the part that builds the main UI; that is, the main page that prompts

the users for their names.

Download workspace/HelloChat/src/com/pragprog/aebook/hellochat/client/HelloChat.java

Ê public void onModuleLoad() {

Ë final Button sendButton = new Button("Send");

final TextBox nameField = new TextBox();

nameField.setText("GWT User");

// We can add style names to widgets

Ì sendButton.addStyleName("sendButton");

// Add the nameField and sendButton to the RootPanel

// Use RootPanel.get() to get the entire body element

Í RootPanel.get("nameFieldContainer").add(nameField);

RootPanel.get("sendButtonContainer").add(sendButton);

// Focus the cursor on the name field when the app loads

Î nameField.setFocus(true);

nameField.selectAll();

Ê An entry point class is a container for the GWT equivalent of a

“main” function. Conceptually, it really is like the main program in

a non-GUI tool. But in Java, everything needs to be enclosed in a

class, so we must create a skeleton class around the actual main.

In a typical GWT application, this is the only method that’s defined

on the entry point class—it’s just an overcomplicated wrapper for

a single method. The real main function is the “onModuleLoad”

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/mcappe/code/workspace/HelloChat/src/com/pragprog/aebook/hellochat/client/HelloChat.java
http://www.pragprog.com/titles/mcappe

GETTING STARTED WITH JAVA AND GWT 129

method of the entry point. As the name suggests, this is what gets

executed when the GWT module is loaded by the client. Inside

this method, we create the UI widgets, lay them out, and set up

the event handlers.

Ë The first thing we do inside of onModuleLoad is create the UI wid-

gets. For basic cases, it looks pretty much like the way we’d do it

if we were building a non-browser UI. We create a button, and a

text box where the users will enter their names.

Ì The first place that things start to look different from a traditional

non-browser UI is in the management of the style attributes of

the widgets. In a typical GUI toolkit, there are a set of methods to

call for various style attributes. For example, in the Mac OS Cocoa

widgets, we could modify the gradient of a button using a call like

[button setGradientType: NSGradientConcaveWeak]. In GWT, that’s all

done using CSS: we’d set a CSS attribute to create a gradient

image for the button background; we’d add the line background:

url("images/gradient.png") to the CSS style block for .gwt-Button. The

only call for managing style is one that sets up a connection to a

CSS style. The style name is translated by GWT into a CSS class=

attribute. It might seem a bit strange at first, but it’s really nice in

practice: it helps maintain that separation of concerns—you really

shouldn’t clutter your code with visual style stuff, and you should

have all of the style stuff in one place. The way GWT uses CSS

gives you a really convenient way of doing that.

Í Now we get to layout. GWT provides you with a GUI context that’s

basically the contents of the browser page, called the RootPanel.

To access the root panel directly, call RootPanel.get(). We can also

do part of our layout using HTML, as in this example. If the appli-

cation’s main HTML page contains elements that are named with

an id= attribute, we can access those elements using get(name). In

this case, the root page for our application did provide elements

for pieces of our application. This is pretty typical of GWT style:

we’ve got a choice between doing things like layout statically (by

doing it in HTML), and doing them dynamically (by writing layout

code in Java). In general, when the layout is pretty much fixed

(like in this case), it’s easier to write an HTML table and just fill it

in from Java. To create something on the fly, like the dialog box

we’ll see in a few minutes, use a GWT layout manager. In the static

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/mcappe

GETTING STARTED WITH JAVA AND GWT 130

layouts, we can get a layout box on the page by calling get, and

then inserting a GUI widget into it, using add(widget).

Î Finally, when the UI loads, we’d like it to work so that if the user

starts typing, it will show up in the text box. We do that by setting

the focus: the focus is the widget on the screen that receives UI

events like keystrokes. Users can set the focus by clicking the

mouse inside of a widget, but it’s annoying to be forced to do that

when there’s only one place where it makes sense for the focus

to be. So we set it to focus on the text entry box. We also have it

automatically select the place-holder text that we put into the box,

so if the users start typing, their text will replace the placeholder.

That’s it for the basic building of the GUI.

That leaves us with two other important pieces. Our application is going

to get a name from a user, and send it to the server. The server puts

that name into a hello message, and sends it back to the client to dis-

play in a pop-up dialog box. What we still need to do is put together

the client/server communication, and the dialog box. We’ll look at the

client/server communication in the next section. First, we’ll look at the

dialog, which is more GWT UI work, but instead of using a static layout

from an HTML file, the dialog is fully dynamic.

Download workspace/HelloChat/src/com/pragprog/aebook/hellochat/client/HelloChat.java

// Create the popup dialog box

Ê final DialogBox dialogBox = new DialogBox();

dialogBox.setText("Remote Procedure Call");

dialogBox.setAnimationEnabled(true);

Ë final Button closeButton = new Button("Close");

// We can set the id of a widget by accessing its Element

closeButton.getElement().setId("closeButton");

final Label textToServerLabel = new Label();

final HTML serverResponseLabel = new HTML();

Ì VerticalPanel dialogVPanel = new VerticalPanel();

dialogVPanel.addStyleName("dialogVPanel");

dialogVPanel.add(new HTML("Sending name to the server:"));

dialogVPanel.add(textToServerLabel);

dialogVPanel.add(new HTML("
Server replies:"));

dialogVPanel.add(serverResponseLabel);

dialogVPanel.setHorizontalAlignment(VerticalPanel.ALIGN_RIGHT);

dialogVPanel.add(closeButton);

Í dialogBox.setWidget(dialogVPanel);

Î closeButton.addClickHandler(new ClickHandler() {

public void onClick(ClickEvent event) {

dialogBox.hide();

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/mcappe/code/workspace/HelloChat/src/com/pragprog/aebook/hellochat/client/HelloChat.java
http://www.pragprog.com/titles/mcappe

GETTING STARTED WITH JAVA AND GWT 131

sendButton.setEnabled(true);

sendButton.setFocus(true);

}

});

Ê First, we need to create the dialog box. This is a popup, so it’s

not contained in the browser frame. That means that we can’t

just grab the RootPanel; we need to create a free-standing widget.

In GWT, that’s easy: DialogBox is a free-standing window frame

that can embed any GWT widget—we just create its contents, and

insert them. Since it’s a window, it has a title bar, and we can set

its contents using its setText method.

Ë We want the users to be able to get rid of the dialog box when-

ever they want, so we create a close button, which we’ll add to the

dialog box frame later. As usual, we can set the attributes of the

widget with CSS. In this case, we do it by diving down directly to

the HTML. Given any widget, we can get the XML element corre-

sponding to that widget by calling getElement(). Then we set its ID,

to allow a CSS style to reference it, using the setId() method of the

XML element.

After the close button, create another couple of widgets. There’s a

Label, which is a piece of non-editable text embedded in a widget.

Then there’s something interesting: an HTML widget, which is a

wrapper for a chunk of literal HTML text. Whatever is inside of

the HTML widget is rendered directly into the HTML page for the

UI. That’s useful for embedding things like styled text, where it’s

often easier to just use HTML markup around a piece of text than

it would be to do the programmatic manipulation to produce the

same effect.

Ì Now, we’re going to lay out a series of elements. Since we don’t

have a static HTML frame, we need to specify how to lay them

out using GWT. The layout is pretty simple: it’s just a bunch of

stuff stacked vertically. GWT has a widget for doing that: the Ver-

ticalPanel. We just add the widgets of the UI to the panel in order.

Notice the HTML markup here: there’s some text we want to show

in boldface. Instead of creating a label widget and setting its style

attributes to make it bold, we can just wrap the text in tags.

Í We’ve got the UI elements laid out in a VerticalPanel. All we need

to do is tell the dialog box that the panel is what it should show:

we do that by setting the dialog box’s widget. Now the visual parts

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/mcappe

RPC IN GWT 132

of the box are all done. The box starts off invisible: standalone

widgets like this don’t actually appear on the users’ screen until

we explicitly tell them to. As we’ll see later, we can do that with a

dialog box by telling it where it should appear. Most of the time,

that’s in the center of the browser window—so the dialog will be

made visible by calling its center() method.

Î With the basic UI set up, we can finally look at how to handle

events in GWT! It’s pretty much the same as in Java’s Swing

library. Create a handler object, and attach it to the appropriate

widget using an addXXXHandler method. In this case, we’re attach-

ing the handler that closes the dialog box when the user clicks

its close button, so we attach a ClickHandler object. In its onClick

method, we make the dialog box invisible, and enable the entry

area of the main page.

9.3 RPC in GWT

Now we get to the complicated part.

As I mentioned before, AJAX code is not written explicitly in GWT.

Instead, we write something called a remote procedure call (RPC). An

RPC is something that looks almost like a normal method call, but

under the covers, it’s translated by the system into a request sent from

the client to the server. The return value of the RPC is the response

sent from the server back to the client.

Just like any other RPC system, there’s a client side and a server side

in GWT. We can look at the code for them separately; it’s up to the GWT

RPC system to string them together.

If you’ve done any distributed programming, Google-style RPC is proba-

bly not what you’re used to. Traditionally, RPC tries to appear as much

like a traditional function call as possible. In other words, if we want

to provide an RPC for a factorial function, the function implementation

would look like a traditional function declaration, and an invocation

of it would look like a traditional invocation. For example, Java has a

native RPC layer, where we define a remote object by an interface, and

then we can invoke methods on an object of the interface type.

We could define a factorial service as a Java interface:

public interface Fact extends Remote {

int fact(int n);

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/mcappe

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Code in the Cloud’s Home Page

http://pragprog.com/titles/mcappe

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/mcappe.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/mcappe
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/mcappe
www.pragprog.com/catalog

