
Extracted from:

Kotlin and Android Development
featuring Jetpack

Build Better, Safer Android Apps

This PDF file contains pages extracted from Kotlin and Android Development fea-
turing Jetpack, published by the Pragmatic Bookshelf. For more information or
to purchase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Kotlin and Android Development
featuring Jetpack

Build Better, Safer Android Apps

Michael Fazio

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

For our complete catalog of hands-on, practical, and Pragmatic content for software devel-
opers, please visit https://pragprog.com.

The team that produced this book includes:

CEO: Dave Rankin
COO: Janet Furlow
Managing Editor: Tammy Coron
Development Editor: Michael Swaine
Copy Editor: Sakhi MacMillan
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics
Founders: Andy Hunt and Dave Thomas

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2021 The Pragmatic Programmers, LLC.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system,
or transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording,
or otherwise, without the prior consent of the publisher.

ISBN-13: 978-1-68050-815-4
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—June 2021

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Create a Custom ListAdapter
The PlayerSummaryAdapter class is responsible for managing all the PlayerSummary
items in our list and handling how they’re displayed. We use a custom Recy-
clerView.ViewHolder inner class (meaning it lives inside PlayerSummaryAdapter) to bind
a PlayerSummary item to the layout, then the RecyclerView library handles the rest.
All we need to do in PlayerSummaryAdapter is tell the RecyclerView what to do when
creating and binding a new ViewHolder plus how to tell the difference between
PlayerSummary items in the list.

After creating PlayerSummaryAdapter in the adapters package, first up is the Player-
SummaryViewHolder inner class. The PlayerSummaryAdapter class both contains and
depends on this class, so we’ll create it first then wrap PlayerSummaryAdapter
around it. The PlayerSummaryViewHolder class inherits from RecyclerView.ViewHolder
and has a single function, bind(), which takes in a PlayerSummary object.

The bind() function doesn’t do much other than assign binding.playerSummary to
the item value. The binding value is an instance of PlayerSummaryListItemBinding,
which was generated by the Data Binding library when we added the generic
<layout> tag to the player_summary_list_item.xml file. The item value, then, is the
PlayerSummary object coming into the method. Once that assignment is complete,
bind() then ensures bindings are executed so the data shows up properly with
the executePendingBindings() function.

inner class PlayerSummaryViewHolder(
private val binding: PlayerSummaryListItemBinding

) :
RecyclerView.ViewHolder(binding.root) {

fun bind(item: PlayerSummary) {
binding.apply {
playerSummary = item
executePendingBindings()

}
}

}

The PlayerSummaryAdapter class around this inner class inherits from ListAdapter,
which takes two type parameters and a DiffUtil.ItemCallback instance. The type
parameters are the type of item in the list (PlayerSummary) and the type of
ViewHolder for those items (PlayerSummaryAdapter.PlayerSummaryViewHolder). The callback
piece is a new private class at the end of the file called (uncreatively) PlayerSumma-
ryDiffCallback. That class looks like this:

private class PlayerSummaryDiffCallback :
DiffUtil.ItemCallback<PlayerSummary>() {

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mfjetpack
http://forums.pragprog.com/forums/mfjetpack

override fun areItemsTheSame(
oldItem: PlayerSummary,
newItem: PlayerSummary

): Boolean = oldItem.id == newItem.id

override fun areContentsTheSame(
oldItem: PlayerSummary,
newItem: PlayerSummary

): Boolean = oldItem == newItem
}

With both PlayerSummaryDiffCallback and PlayerSummaryViewHolder ready, we can get
PlayerSummaryAdapter created. This class, which inherits from ListAdapter, will also
contain a few overridden functions that we’ll create in a bit. The class decla-
ration plus the other class and function from before together look like this:

class PlayerSummaryAdapter :
ListAdapter<PlayerSummary, PlayerSummaryAdapter.PlayerSummaryViewHolder>(

PlayerSummaryDiffCallback()
) {

//Overridden functions will go here in a bit.

inner class PlayerSummaryViewHolder(
private val binding: PlayerSummaryListItemBinding

) :
RecyclerView.ViewHolder(binding.root) {

fun bind(item: PlayerSummary) {
binding.apply {

playerSummary = item
executePendingBindings()

}
}

}
}

private class PlayerSummaryDiffCallback :
DiffUtil.ItemCallback<PlayerSummary>() {

override fun areItemsTheSame(
oldItem: PlayerSummary,
newItem: PlayerSummary

): Boolean =
oldItem.id == newItem.id

override fun areContentsTheSame(
oldItem: PlayerSummary,
newItem: PlayerSummary

): Boolean =
oldItem == newItem

}

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mfjetpack
http://forums.pragprog.com/forums/mfjetpack

An error should be there with the PlayerSummaryAdapter as written since we’ve
yet to implement the two abstract functions from ListAdapter: onCreateViewHolder()
and onBindViewHolder(). Both functions are effectively one step, so we can get
them done pretty quickly.

onCreateViewHolder() needs to know how to build instances of PlayerSummaryViewHold-
er. That means we’re inflating our layout using the DataBindingUtil class as we
have done a few times in this book, sending that into a new PlayerSummaryViewHold-
er instance, and returning that from the function.

override fun onCreateViewHolder(
parent: ViewGroup,
viewType: Int

): PlayerSummaryViewHolder =
PlayerSummaryViewHolder(

DataBindingUtil.inflate(
LayoutInflater.from(parent.context),
R.layout.player_summary_list_item,
parent,
false

)
)

onBindViewHolder() is even more straightforward, as it uses a PlayerSummaryViewHolder
instance from onCreateViewHolder(), then sends a PlayerSummary item into the bind()
function. We use the getItem() function from the ListAdapter class to get the correct
PlayerSummary based on where we are in the list. This is a major advantage of
inheriting from the ListAdapter class—it does almost all the work for us as far
as handling the items and retrieving the correct one.

override fun onBindViewHolder(
viewHolder: PlayerSummaryViewHolder,
position: Int

) {
viewHolder.bind(getItem(position))

}

The PlayerSummaryAdapter is now ready for use, so we can head over to the Rank-
ingsFragment class to get everything connected.

Connect Adapter to RecyclerView
Here, we’re expanding on what we set up earlier with RankingsFragment. Inside
the onCreateView() function, we instantiate a PlayerSummaryAdapter object, then
assign that to the RecyclerView. Retrieving that RecyclerView object turns out to
be easier than previous times we’ve gotten view components because the
entire view we inflated earlier is a <RecyclerView>. As a result, we can convert

• Click HERE to purchase this book now. discuss

Connect Adapter to RecyclerView • 7

http://pragprog.com/titles/mfjetpack
http://forums.pragprog.com/forums/mfjetpack

the view value into a RecyclerView instance, then assign the adapter property.
We’re also going to add an ItemDecoration to the RecyclerView, which adds light
gray lines between each row.

override fun onCreateView(
inflater: LayoutInflater,
container: ViewGroup?,
savedInstanceState: Bundle?

): View? {
val view =

inflater.inflate(R.layout.fragment_rankings, container, false)
val playerSummaryAdapter = PlayerSummaryAdapter()➤

➤

if (view is RecyclerView) {➤

with(view) {➤

adapter = playerSummaryAdapter➤
➤

addItemDecoration(➤

DividerItemDecoration(➤

context,➤

LinearLayoutManager.VERTICAL➤

)➤

)➤

}➤

}➤

return view
}

This is another great example of smart casting in Kotlin that we first saw in
Update roll() and pass() Functions, on page ?. Since we checked that view is
an instance of RecyclerView, view is treated in that entire block as a RecyclerView
instance without having to create a new value.

Also, we normally would have assigned a value to the layoutManager property
on RecyclerView like this:

layoutManager = LinearLayoutManager(context)

However, it wasn’t required since we already handled setting a LayoutManager
in the <RecyclerView> tag inside fragment_rankings.xml.

The RecyclerView is now complete and has an assigned adapter to handle all its
data. The last piece we need to cover here is how to get that data from the
database into the PlayerSummaryAdapter. To do that, we’re going to create Rank-
ingsViewModel and observe a LiveData value from there.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mfjetpack
http://forums.pragprog.com/forums/mfjetpack

