
Extracted from:

My Job Went to India
And All I Got Was This Lousy Book

This PDF file contains pages extracted from My Job Went to India, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy, please

visit http://www.pragmaticprogrammer.com.

Note: This extract contains some colored text (particularly in code listing). This is available

only in online versions of the books. The printed versions are black and white. Pagination

might vary between the online and printer versions; the content is otherwise identical.

Copyright © 2005 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.





Be a Generalist 26

5 Be a Generalist

For at least a couple of decades, desperate managers and business owners

have been pretending that software development is a manufacturing pro-

cess at heart. Requirements specifications are created, and architects turn

these specifications into a high-level technical vision. Designers fill out

the architecture with detailed design documentation, which is handed to

robot-like coders, who hold pulp-fiction novels in one hand while sleepily

typing in the design’s implementation with the other. Finally, Inspector 12

receives the completed code, which doesn’t receive her stamp of approval

unless it meets the original specifications.

It’s no surprise that managers want software development to be like man-

ufacturing. Managers understand how to make manufacturing work. We

have decades of experience in how to build physical objects efficiently

and accurately. So, applying what we’ve learned from manufacturing,

we should be able to optimize the software development process into the

well-tuned engine that our manufacturing plants have become.

In the so-called software factory, the employees are specialists. They sit

at their place in the assembly line, fastening Java components together or

rounding the rough edges of a Visual Basic application on their software

lathes. Inspector 12 is a tester by trade. Software components move down

the line, and she tests and stamps them in the same way each day. J2EE

designers design J2EE applications. C++ coders code in C++. The world

is very clean and compartmentalized.

Unfortunately, the manufacturing analogy doesn’t work. Software is at

least as malleable as software requirements. Things change in business,

and businesspeople know that software is soft and can be changed to meet

those requirements. This means architecture, designs, code, and tests must

all be created and revised in a fashion more agile than the leanest manu-

facturing processes can provide.

In this kind of rapidly changing environment, the flexible will survive.

When the pressure is on, a smart businessperson will turn to a software

professional can solve the problem at hand. So, how do you become that

person whose name comes up when they’re looking for a superhero to

save the day? The key is to be able to solve the problems that may arise.

What are those problems? That’s right: you don’t know. Neither do I.

What I do know is that those problems are as diverse as deployment issues,

CLICK HERE to purchase this book now.



Be a Generalist 27

critical design flaws that need to be solved and quickly reimplemented,

heterogenous system integration, and rapid, ad hoc report generation.

Faced with a problem set as diverse as this, poor Inspector 12 would be

passed over pretty quickly.

The label jack-of-all-trades—master of none is normally meant to be deroga-

tory, implying that the labelee lacks the focus to really dive into a subject

and master it. But, when your online shopping application is on the fritz,

and you’re losing orders by the hundreds as each hour passes, it’s the jack-

of-all-trades who not only knows how the application’s code works but

can also do low-level UNIX debugging of your web server processes, ana-

lyze your RDBM’s configuration for potential performance bottlenecks,

and check your network’s router configuration for hard-to-find problems.

And, more important, after finding the problem, the jack-of-all-trades can

quickly make architecture and design decisions, implement code fixes,

and deploy a new fixed system to production. In this scenario, the manu-

facturing scenario seems quaint at best and critically flawed at worst.

Another way in which the software factory breaks down is in that,

although in an assembly line the work keeps coming in a steady flow,

software projects are usually very cyclical. Not only is the actual flow

of projects cyclical, but the work inside a project is cyclical. A coder

sits on the bench while requirements are being specified, architected, and

designed, or the coder multitasks across many projects. The problem with

multitasking coders is that, despite the software factory’s intentions, when

the rubber meets the road, the coders rely a great deal on context and

experience to get their jobs done. Requirements, architecture, and design

documents can be a great head start, but ultimately if the programmers

don’t understand what the system is supposed to do, they won’t be able

to create a good implementation of the system.

Of course, I’m not just picking on coders here. The same is true at nearly

every spot on the software assembly line. Context matters, and multitask-

ing doesn’t quite work. As a result, we have an inefficient manufacturing

system. There have been various attempts to solve this problem of inef-

ficiency without departing from the manufacturing-inspired system, but

we have not yet figured out how to optimize our software factories to an

acceptable level.

If you are just a coder or a tester or a designer or an architect, you’re going

to find yourself sitting idle or doing busywork during the ebbs of your

business’s project flow. If you are just a J2EE programmer or a .NET pro-

grammer or a UNIX systems programmer, you’re not going to have much

CLICK HERE to purchase this book now.



Be a Generalist 28

to contribute when the focus of a project or a company shifts, even tem-

porarily, out of your focus area. It’s not about where you sit on the per-

ceived value chain of project work (where the architect holds the highest

spot of royalty). It’s about how generally useful you make yourself.

If your goal is to be the last person standing amid rounds of layoffs and

the shipment of jobs overseas, you better make yourself generally useful.

If you’re afraid that your once-crowded development office will become

home to an onshore skeleton crew, it would serve you well to realize that

when the team has only a few slots, a just-a-tester or just-a-coder is not going

to be in demand.

Generalists are

rare...and, therefore,

precious.

Something I have personally experienced in

searching for employees in low-cost countries

is that there aren’t many generalists. The

Indian IT industry, for example, was formed

in the image of its cultural heritage—one that

places great emphasis on rank and title. I interviewed people calling them-

selves team leaders who led teams of two (self-inclusive) and reported to

managers of two such teams. In many cases it can get so ridiculous, that

the organizations’ structures are parodies of themselves.

The software factory system of development is a perfect fit for the Indian

IT sector, because it naturally supports the hierarchy that the companies

and their employees desire. Testers are the bottom rung of the ladder, and

nearly everyone you meet there wants to become an architect and then a

high-level manager. The culture breeds specialists. Architects don’t stoop

to design. Designers don’t stoop to code, and so on.

The way to become a generalist is to not label yourself with a specific role

or technology. We can become typecast in our careers in many ways. To

visualize what it means to be a generalist, it can help to dissect the IT

career landscape into its various independent aspects. I can think of five,

but an infinite number exists (it’s all in how you personally divide topics):

• Rung on the career ladder

• Platform/OS

• Code vs. data

• Systems vs. applications

• Business vs. IT

These are different dimensions on which you can approach the problem

of becoming a generalist. This is just a way to think about the whole pic-

CLICK HERE to purchase this book now.



Be a Generalist 29

ture of your career, and you can probably come up with a better list for

yourself. For now, we’ll discuss these.

If companies need

generalists, they’re

going to have to get

them in the West.

First, you can choose to either be a leader or

manager type or be a technical person. Or,

you might pigeon hole yourself into architect

as opposed to being a programmer or tester.

The ability to be flexible in the roles you can

and will fill is an attribute that many people

don’t understand the value of. For example, while a strong leader should

avoid pinch hitting as often as possible, the new world of onshore skele-

ton crews can benefit from a person who knows how to lead people and

projects but can also roll up their sleeves and fix some last minute critical

bugs while the Offshore team is sleeping. The same is true of a software

architect who could perhaps dramatically speed up progress on a project if

he or she would only write some code to get things moving. When it comes

to hierarchical boundary crossing, it’s most often not reluctance that stops

people from doing it. It’s ability. Programmer geeks can’t lead and leaders

can’t hack. It’s rare to find someone who’s even decent at both.

Your skills should

transcend technology

platforms.

Another artificial (and inexcusable) line gets

drawn around platforms or operating systems.

Being a UNIX Guy who refuses to do Win-

dows is increasingly more impractical as the

jobs flow away. The same goes for .NET ver-

sus J2EE or any other such infrastructure platforms. Longevity is going to

require that you are platform neutral in the work place. We all have our

preferences, but you’re going to have to leave your ideals at home. Master

one and get good at the other. Your skills should transcend technology

platform. It’s just a tool. If we want a Windows person, we can hire them

in the Philippines. If we want someone who really understands Windows

and UNIX development and can help us integrate them together, we’re

probably going to be looking Onshore. Don’t get passed up over what is

essentially team spirit.

The dividing line between database administrator (a role that has solid-

ified out of nothingness over the past decade) and software developer

should also be fuzzy. Being a database administrator, or DBA, has in many

organizations come to mean that you know how to use some GUI admin

tool and you know how to setup a specific database product. You don’t

necessarily know much of anything about how to use the database. On the

flip side, software developers are growing increasingly lazy and ignorant

about how to work with databases. Each side feeds the other.

CLICK HERE to purchase this book now.



Be a Generalist 30

What first amazed me most when I entered the information technology

field was that many well-educated programmers (maybe most ) didn’t

know the first thing about how to set up the systems they used for devel-

opment and deployment. I worked with developers who couldn’t even

install an operating system on a PC if you asked them to, much less set

up an application server on which to deploy their applications. It’s rare,

and refreshing, to find a developer who truly understands the platform on

which he or she is working. Applications are better and work gets done

faster as a result.

Finally, as we discussed in Coding Don’t Cut It Anymore, on page 16, the

wall between The Business and IT should be torn down right now. Start

learning how your business operates.

Act on it!

1. On a piece of paper or a whiteboard, list the dimensions on which

you may or may not be generalizing your knowledge and abilities.

For each dimension, write your specialty. For example, if Platform

and Operating System is one of your dimensions, you might write Win-

dows/.NET next to it. Now, to the right of your specialty, write one or

more topics you should put into your TO-LEARN list. Continuing with

the same example, you might write Linux and Java (or even Ruby or

Perl).

As soon as possible (some time this week at the latest!), find thirty min-

utes of time to start addressing at least one of the TO-LEARN items on

your list. Don’t just read about it. If possible, get some hands-on expe-

rience. If it’s web technology, then download a web server package

and set it up yourself. If it’s a business topic, find one of your customers

at work and ask them to go out for lunch for a chat.

CLICK HERE to purchase this book now.



The Pragmatic Bookshelf
The Pragmatic Starter Kit series: Three great titles, one objective. To get you up to speed with

the essentials for successful project development. Keep your source under control, your bugs

in check, and your process repeatable with these three concise, readable books.

Facets of Ruby series: Learn all about developing applications using the Ruby programming

language, from the famous Pickaxe book to the latest books featuring Ruby On Rails.

The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style, and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help programmers stay on top of their game.

Visit Us Online
My Job Went to India

pragmaticprogrammer.com/titles/mjwti

This book’s home page, including errata and other resources.

Register for Updates

pragmaticprogrammer.com/updates

Be notified when updates and new books become available.

Join the Community

pragmaticprogrammer.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact with

our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

pragmaticprogrammer.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available for

purchase at our store: pragmaticprogrammer.com/titles/mjwti.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com


