
Extracted from:

Developing Facebook Platform
Applications with Rails

This PDF file contains pages extracted from Developing Facebook Platform, published by

the Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2008The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Beta
Book

Agile publishing for agile developers

The book you’re reading is still under development. As part of our

Beta book program, we’re releasing this copy well before we normally

would. That way you’ll be able to get this content a couple of months

before it’s available in finished form, and we’ll get feedback to make

the book even better. The idea is that everyone wins!

Be warned. The book has not had a full technical edit, so it will con-

tain errors. It has not been copyedited, so it will be full of typos and

other weirdness. And there’s been no effort spent doing layout, so

you’ll find bad page breaks, over-long lines with little black rectan-

gles, incorrect hyphenations, and all the other ugly things that you

wouldn’t expect to see in a finished book. We can’t be held liable if you

use this book to try to create a spiffy application and you somehow

end up with a strangely shaped farm implement instead. Despite all

this, we think you’ll enjoy it!

Throughout this process you’ll be able to download updated PDFs

from your account on http://pragprog.com. When the book is finally

ready, you’ll get the final version (and subsequent updates) from the

same address. In the meantime, we’d appreciate you sending us your

feedback on this book at http://books.pragprog.com/titles/mmfacer/errata,

or by using the links at the bottom of each page.

Thank you for being part of the Pragmatic community!

Andy Hunt

http://pragprog.com
http://books.pragprog.com/titles/mmfacer/errata

Chapter 3

Creating Your First Application
So far, we’ve used the Facebook developer tool to create keys for an

application. We’ve also configured Facebook to talk to our computer

and to run a pre-built application. After all that setup, let’s get started

writing Karate Poke.

In this chapter we’re going to add two features found in many social

networking applications. We’ll start by building an invitation system to

allow our users to tell their friends about Karate Poke. From there, we’ll

add some content to our users’ profiles.

Before we do that, let me explain what the “Poke” in Karate Poke means.

Poke is a very simple Facebook application that lets you let another

know you’re thinking about them. When you poke a user, they just

receive a message telling them that they were poked by you. Because of

the simplicity of the application, developers quickly created a number

of variations on the poke concept. Poke applications like “Super Poke”

and “X Me” are some of the most popular applications on Facebook.

3.1 Creating a Facebook Rails Application

In the last chapter, we created an application with the Developer tool.

Now we’re going to write some code for Karate Poke.

Configuring Rails

First, we’re going to need a Rails application. Let’s create an application

called karate_poke

$ rails karate_poke

...

CREATING A FACEBOOK RAILS APPLICATION 33

Now that we have a Rails application, let’s turn it into a Facebook appli-

cation. We’re going to need to install the Facebooker plugin. Facebooker

is a Ruby library that knows how to talk to Facebook. It provides access

to the Facebook API, some view helpers and the glue that makes our

application part of Facebook. Run script/plugin to install the Facebooker.

You will need to specify the full path to the Subversion repository like I

did in the example below.

$ script/plugin install \

http://facebooker.rubyforge.org/svn/trunk/facebooker/

+ ./CHANGELOG.txt

+ ./COPYING

It’s time to do a little configuration to our Facebook application. This

next step will look familiar to you. Installing Facebooker will create

a config/facebooker.yml. Open this file and fill in the development sec-

tion. You can either use the API key and secret key that came from

the application you created in Chapter 2, Getting Started with the Face-

book Platform, on page 18, or you can follow the same steps and create

a new application. I’m lazy, so I’m going to use my existing Facebook

application.

Since you’ve had to do this step twice already, you’ve probably guessed

that these lines of code are important to a Facebook application. Let’s

look at what they actually do. The first two lines are our application’s

username and password. They authenticate our application to Face-

book. Just as importantly, they let our application verify that requests

are coming from Facebook. It sounds odd that we need to verify that

requests come from Facebook. I’ll explain why in Section 3.1, The details

of Facebook signatures, on the following page.

The next line tells Facebooker what to use for our application’s canvas

path. We talked about the canvas path in Section 2.4, Configuring our

new Facebook Application, on page 26. Facebooker will automatically

include our canvas paths in all of our application’s links.

The last line is used to tell Facebooker where to find our server. While

all requests for our canvas pages go through Facebook, our images

will be requested directly from our servers. By setting the callback_url

parameter, Rails knows to use the hostname of our server instead of

apps.facebook.com.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/mmfacer

CREATING A FACEBOOK RAILS APPLICATION 34

The details of Facebook signatures

One thing we won’t do in this book is build a login controller. We can

depend on Facebook to handle authentication for us. In fact, Facebook

sends us the id of the current user and their whole list of friends on

every request. That makes our life quite a bit easier. It also can cause

some security problems.

In typical web development, your application would never include a

logged in user’s ID as a part of the URL. After all, a malicious user

could change the user ID in the URL to access our application as a

different user. Facebook development is a little different.

In Facebook development, we never talk to our users directly. All requests

come from Facebook. To make sure this is the case, we can verify the

signature that is sent by Facebook on every request. A digital signature

is a way to use cryptography to verify that something actually came

from the person who it appears to be from.1 Facebook sends a number

of parameters that start with fb_sig. All of these parameters are used in

the signature validation.

When Facebook sends our applications a request, it builds a string

that includes all of the fb_sig parameters in alphabetical order. It then

add our Secret Key to the end of that string and calculates the MD5

sum.2 Facebook then adds this signature to the request in the fb_sig

parameter. When Facebooker receives a request, it goes through the

same steps to re-calculate the signature. If the value that Facebooker

calculates matches the one in our request it proves that the request

cam from somebody who knows our secret key. We also know that the

request wasn’t changed after it was sent (If the request was changed,

the signatures wouldn’t match.) If they don’t match, then we know that

the key the sender used to calculate the signature doesn’t match our

key. When that happens Facebooker will raise an exception. You will

probably see this exception from time to time. It doesn’t normally come

from a forged request. It normally shows up when you’ve got the wrong

key in your facebooker.yml file.

1. For more information see http://en.wikipedia.org/wiki/Digital_signature

2. MD5 is a cryptographic one way hash function. You can learn more at

http://en.wikipedia.org/wiki/MD5

CLICK HERE to purchase this book now.

http://en.wikipedia.org/wiki/Digital_signature
http://en.wikipedia.org/wiki/MD5
http://www.pragprog.com/titles/mmfacer

SENDING AN INVITATION 35

Setting up the Controllers

Now that we have Rails configured, we need to do a little setup in the

Application controller. Since Facebook limits the information we can

learn about users who haven’t installed our application, let’s force all

of our users to add Karate Poke. Facebooker provides a filter to do that.

Let’s add that to our Application controller.

Download chapter3/karate_poke/app/controllers/application.rb

Filters added to this controller apply to all controllers in the application.

Likewise, all the methods added will be available for all controllers.

class ApplicationController < ActionController::Base

helper :all # include all helpers, all the time

See ActionController::RequestForgeryProtection for details

Uncomment the :secret if you're not using the cookie session store

protect_from_forgery :secret => 'a7cabcdf1499df9ded55d8a3797d9387'

ensure_application_is_installed_by_facebook_user

end

Now that we have our filter in place, we’ll also need to change the way

Rails handles sessions. By default, Rails uses cookies to store session

information. Since Facebook sits between us and our users, we won’t

be able to count on cookies for session storage. Instead, we’ll store our

session information in the database.

First, we’ll need to run script/generate session_migration to create all of the

right tables. Next, we’ll need to uncomment a line in environment.rb

config.action_controller.session_store = :active_record_store

With that in place, we’re ready to start coding.

3.2 Sending an Invitation

Now that we’ve configured our application it’s time to actually write

code. Since we’re going to start by building an invitation system, let’s

start by creating the Invitations controller.

Creating the invitation controller

We can create our controller using the Rails generator.

$ script/generate controller invitations

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/mmfacer/code/chapter3/karate_poke/app/controllers/application.rb
http://www.pragprog.com/titles/mmfacer

SENDING AN INVITATION 36

We’re going to use the new RESTful3 features of Rails to build Karate

Poke. REST stands for Representational State Transfer. Starting with

version 1.2, Rails provides support for creating applications using REST

principals. These conventions tells us that we should use the new action

to show a form. Before we do that, let’s set up our routes.

map.resources :invitations

With that little bit of setup out of the way we’re ready to create our view.

Creating the invitation form using FBML

Now that we’ve got a controller and a route, we need to create a view.4

Download chapter3/karate_poke/app/views/invitations/new.erb

<fb:fbml>

<fb:request-form

action="<%=new_invitation_path%>"

method="POST"

invite="true"

type="Karate Poke"

content="I added a cool application." >

<fb:multi-friend-selector

showborder="false"

actiontext="Invite your friends to use Karate Poke." />

</fb:request-form>

</fb:fbml>

That looks a little like HTML, but I bet you’ve never seen those tags

before. What you’re seeing is FBML, the Facebook Markup Language.

FBML is one of the most powerful features of the Facebook platform. It

acts as an extension to HTML that gives you some prebuilt user inter-

face components. FBML is translated into normal HTML when Face-

book process your page.

Before we get into the details of how the view works, let’s see what

it does. Start up script/server and then open a browser to your invita-

tion page.5 Make sure you’re logged in as one of your test users. You

should see something that looks lik Figure 3.1, on the following page.

If it doesn’t, make sure you’ve copied the code exactly. You should also

make sure that the test user you’re using has at least one friend.

3. If you haven’t used the new RESTful Rails features, Geoffrey Grossenbach provides a

great overview at http://peepcode.com/products/restful-rails

4. The naming convetion for views changed between Rails 1.2 and Rails 2.0. Templates

now end in .erb instead of .rhtml by default.

5. http://apps.facebook.com/«canvas_path»/invitations/new

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/mmfacer/code/chapter3/karate_poke/app/views/invitations/new.erb
http://peepcode.com/products/restful-rails
http://www.pragprog.com/titles/mmfacer

SENDING AN INVITATION 37

Figure 3.1: Our Facebook Invitation Page

That’s pretty impressive for just a few simple lines of code! Since there

are only three different FBML tags in our view, let’s look at each one.

The first tag, <fb:fbml> is very similar to the <html> tag. It marks the

start of an FBML document. Your canvas pages will still work without

the <fb:fbml> tag, but it is required for profile pages. It’s best to get

into the habit of always wrapping your pages in an <fb:fbml> tag.

The next tag, <fb:request-form>, starts a special type of Facebook form.

This special form allows your application to create Facebook requests.

It takes most of the normal form parameters like action and method

along with two additional parameters, type and content. The type param-

eter specifies what text shows up on the submit button for the form. It’s

used to tell the user what type of request they are sending. The content

parameter gives the body of the message that is sent to the selected

users.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/mmfacer

SENDING AN INVITATION 38

Working with multiple users

Since Facebook is a social platform, you should plan to spend a
lot of time using two accounts. We’ll spend a lot of time sending
requests and notifications between two users. You’ll get really
frustrated if you have to log out of one account and log in to
another every time you want to view the invitation you just sent.

To make life a little easier, I normally use two different browsers,
either Firefox and Safari or Firefox and IE depending upon my
current development platform. This will allow you to stay logged
in to both accounts at once. As a bonus, you can test your CSS
in multiple browsers at the same time too!

The final tag, <fb:multi-friend-selector> is responsible for rendering the

actual friend selector. Facebook provides several different friend selec-

tors. They all achieve the same goal, but have different interfaces. This

selector allows you to click on images for your friends and includes mul-

tiple tabs. We’ll look at another friend selector in Section 5.1, Building

our first form, on page 67.

If it feels like I’m going really fast, don’t worry. I’ll cover FBML in a lot

more detail in Chapter 5, Getting Into the Facebook Canvas, on page 66.

Facebook also provides a wiki6 that includes detailed FBML documen-

tation.

So let’s try out the invitation functionality. Use the friend selector to

send a request to one of your test accounts. We set the action of the

form to new_invitation_path() so we’ll end up right back on this page

after sending an invitation. Try that out now. It’s pretty hard to tell that

your request was sent. Let’s make a note to fix that later.

Now that we’ve sent a request, let’s see what it looks like for the recip-

ient. Log in as the user you sent the request to and take a look at the

upper right corner of your home page. You should see a message telling

you that you have a new request. When you click on that request, you

will be taken to a page where you can read the message. It’s nice that

you can view the message, but it’s definitely a little boring. It certainly

6. http://wiki.developers.facebook.com/index.php/FBML

CLICK HERE to purchase this book now.

http://wiki.developers.facebook.com/index.php/FBML
http://www.pragprog.com/titles/mmfacer

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style, and continue to garner awards

and rave reviews. As development gets more and more difficult, the Pragmatic Program-

mers will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Developing Facebook Platform Applications With Rails’ Home Page

http://pragprog.com/titles/mmfacer

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/mmfacer.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragprog.com/catalog

Customer Service: orders@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

http://pragprog.com/titles/mmfacer
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/mmfacer
www.pragprog.com/catalog

	Contents
	Introducing the Facebook Platform
	Build Something Cool
	Harnessing the Social Network
	Take Advantage of the Facebook Platform
	Start an Outbreak
	Developing With Rails
	Summary

	Getting Started with the Facebook Platform
	Adding the Karate Poke Application
	The Parts of a Facebook Application
	Getting Inside the App
	Setting up and Running the App
	Summary

	Creating Your First Application
	Creating a Facebook Rails Application
	Sending an Invitation
	Giving the sender some feedback
	Making our Invitation Interactive
	Updating the Profile
	Refactoring to use Helpers
	Summary

	Building the Karate Poke Object Model
	Building the User Model
	Accessing Facebook from Models
	Creating the Move Model
	Attack!
	Creating the Belt Model
	Encouraging Invitations
	Refactoring and Performance
	Summary

	Getting Into the Facebook Canvas
	Getting Interactive with Forms
	Building the battles page
	Adding Navigation
	Hiding Content From Users
	Adding Pagination
	Adding Some Style
	Summary

	Making it More Social
	Sending Notifications
	Publishing to News Feeds
	Comments and Discussion Boards
	Spreading by Invitation
	Summary

	Profiles and the Facebook REST API
	Using the REST API
	The Facebook Query Language
	The Facebook Profile In Depth
	Summary

	Integrating Facebook and Existing Websites
	Scripting with FBJS
	FBJS overview
	AJAX in FBJS
	Summary

	Testing with Facebook
	Scaling and Performance
	Getting Faster with Memcached
	Caching our Views
	Caching with refs
	API performance
	Summary

	Bibliography
	Index

