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Chapter 3

Creating Your First Application
So far, we’ve used the Facebook developer tool to create keys for an

application. We’ve also configured Facebook to talk to our computer

and to run a pre-built application. After all that setup, let’s get started

writing Karate Poke.

In this chapter we’re going to add two features found in many social

networking applications. We’ll start by building an invitation system to

allow our users to tell their friends about Karate Poke. From there, we’ll

add some content to our users’ profiles.

Before we do that, let me explain what the “Poke” in Karate Poke means.

Poke is a very simple Facebook application that lets you let another

know you’re thinking about them. When you poke a user, they just

receive a message telling them that they were poked by you. Because of

the simplicity of the application, developers quickly created a number

of variations on the poke concept. Poke applications like “Super Poke”

and “X Me” are some of the most popular applications on Facebook.

3.1 Creating a Facebook Rails Application

In the last chapter, we created an application with the Developer tool.

Now we’re going to write some code for Karate Poke.

Configuring Rails

First, we’re going to need a Rails application. Let’s create an application

called karate_poke

$ rails karate_poke

...
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Now that we have a Rails application, let’s turn it into a Facebook appli-

cation. We’re going to need to install the Facebooker plugin. Facebooker

is a Ruby library that knows how to talk to Facebook. It provides access

to the Facebook API, some view helpers and the glue that makes our

application part of Facebook. Run script/plugin to install the Facebooker.

You will need to specify the full path to the Subversion repository like I

did in the example below.

$ script/plugin install \

http://facebooker.rubyforge.org/svn/trunk/facebooker/

+ ./CHANGELOG.txt

+ ./COPYING

It’s time to do a little configuration to our Facebook application. This

next step will look familiar to you. Installing Facebooker will create

a config/facebooker.yml. Open this file and fill in the development sec-

tion. You can either use the API key and secret key that came from

the application you created in Chapter 2, Getting Started with the Face-

book Platform, on page 18, or you can follow the same steps and create

a new application. I’m lazy, so I’m going to use my existing Facebook

application.

Since you’ve had to do this step twice already, you’ve probably guessed

that these lines of code are important to a Facebook application. Let’s

look at what they actually do. The first two lines are our application’s

username and password. They authenticate our application to Face-

book. Just as importantly, they let our application verify that requests

are coming from Facebook. It sounds odd that we need to verify that

requests come from Facebook. I’ll explain why in Section 3.1, The details

of Facebook signatures, on the following page.

The next line tells Facebooker what to use for our application’s canvas

path. We talked about the canvas path in Section 2.4, Configuring our

new Facebook Application, on page 26. Facebooker will automatically

include our canvas paths in all of our application’s links.

The last line is used to tell Facebooker where to find our server. While

all requests for our canvas pages go through Facebook, our images

will be requested directly from our servers. By setting the callback_url

parameter, Rails knows to use the hostname of our server instead of

apps.facebook.com.

CLICK HERE to purchase this book now.
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The details of Facebook signatures

One thing we won’t do in this book is build a login controller. We can

depend on Facebook to handle authentication for us. In fact, Facebook

sends us the id of the current user and their whole list of friends on

every request. That makes our life quite a bit easier. It also can cause

some security problems.

In typical web development, your application would never include a

logged in user’s ID as a part of the URL. After all, a malicious user

could change the user ID in the URL to access our application as a

different user. Facebook development is a little different.

In Facebook development, we never talk to our users directly. All requests

come from Facebook. To make sure this is the case, we can verify the

signature that is sent by Facebook on every request. A digital signature

is a way to use cryptography to verify that something actually came

from the person who it appears to be from.1 Facebook sends a number

of parameters that start with fb_sig. All of these parameters are used in

the signature validation.

When Facebook sends our applications a request, it builds a string

that includes all of the fb_sig parameters in alphabetical order. It then

add our Secret Key to the end of that string and calculates the MD5

sum.2 Facebook then adds this signature to the request in the fb_sig

parameter. When Facebooker receives a request, it goes through the

same steps to re-calculate the signature. If the value that Facebooker

calculates matches the one in our request it proves that the request

cam from somebody who knows our secret key. We also know that the

request wasn’t changed after it was sent (If the request was changed,

the signatures wouldn’t match.) If they don’t match, then we know that

the key the sender used to calculate the signature doesn’t match our

key. When that happens Facebooker will raise an exception. You will

probably see this exception from time to time. It doesn’t normally come

from a forged request. It normally shows up when you’ve got the wrong

key in your facebooker.yml file.

1. For more information see http://en.wikipedia.org/wiki/Digital_signature

2. MD5 is a cryptographic one way hash function. You can learn more at

http://en.wikipedia.org/wiki/MD5

CLICK HERE to purchase this book now.
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Setting up the Controllers

Now that we have Rails configured, we need to do a little setup in the

Application controller. Since Facebook limits the information we can

learn about users who haven’t installed our application, let’s force all

of our users to add Karate Poke. Facebooker provides a filter to do that.

Let’s add that to our Application controller.

Download chapter3/karate_poke/app/controllers/application.rb

# Filters added to this controller apply to all controllers in the application.

# Likewise, all the methods added will be available for all controllers.

class ApplicationController < ActionController::Base

helper :all # include all helpers, all the time

# See ActionController::RequestForgeryProtection for details

# Uncomment the :secret if you're not using the cookie session store

protect_from_forgery :secret => 'a7cabcdf1499df9ded55d8a3797d9387'

ensure_application_is_installed_by_facebook_user

end

Now that we have our filter in place, we’ll also need to change the way

Rails handles sessions. By default, Rails uses cookies to store session

information. Since Facebook sits between us and our users, we won’t

be able to count on cookies for session storage. Instead, we’ll store our

session information in the database.

First, we’ll need to run script/generate session_migration to create all of the

right tables. Next, we’ll need to uncomment a line in environment.rb

config.action_controller.session_store = :active_record_store

With that in place, we’re ready to start coding.

3.2 Sending an Invitation

Now that we’ve configured our application it’s time to actually write

code. Since we’re going to start by building an invitation system, let’s

start by creating the Invitations controller.

Creating the invitation controller

We can create our controller using the Rails generator.

$ script/generate controller invitations

CLICK HERE to purchase this book now.
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We’re going to use the new RESTful3 features of Rails to build Karate

Poke. REST stands for Representational State Transfer. Starting with

version 1.2, Rails provides support for creating applications using REST

principals. These conventions tells us that we should use the new action

to show a form. Before we do that, let’s set up our routes.

map.resources :invitations

With that little bit of setup out of the way we’re ready to create our view.

Creating the invitation form using FBML

Now that we’ve got a controller and a route, we need to create a view.4

Download chapter3/karate_poke/app/views/invitations/new.erb

<fb:fbml>

<fb:request-form

action="<%=new_invitation_path%>"

method="POST"

invite="true"

type="Karate Poke"

content="I added a cool application." >

<fb:multi-friend-selector

showborder="false"

actiontext="Invite your friends to use Karate Poke." />

</fb:request-form>

</fb:fbml>

That looks a little like HTML, but I bet you’ve never seen those tags

before. What you’re seeing is FBML, the Facebook Markup Language.

FBML is one of the most powerful features of the Facebook platform. It

acts as an extension to HTML that gives you some prebuilt user inter-

face components. FBML is translated into normal HTML when Face-

book process your page.

Before we get into the details of how the view works, let’s see what

it does. Start up script/server and then open a browser to your invita-

tion page.5 Make sure you’re logged in as one of your test users. You

should see something that looks lik Figure 3.1, on the following page.

If it doesn’t, make sure you’ve copied the code exactly. You should also

make sure that the test user you’re using has at least one friend.

3. If you haven’t used the new RESTful Rails features, Geoffrey Grossenbach provides a

great overview at http://peepcode.com/products/restful-rails

4. The naming convetion for views changed between Rails 1.2 and Rails 2.0. Templates

now end in .erb instead of .rhtml by default.

5. http://apps.facebook.com/«canvas_path»/invitations/new
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Figure 3.1: Our Facebook Invitation Page

That’s pretty impressive for just a few simple lines of code! Since there

are only three different FBML tags in our view, let’s look at each one.

The first tag, <fb:fbml> is very similar to the <html> tag. It marks the

start of an FBML document. Your canvas pages will still work without

the <fb:fbml> tag, but it is required for profile pages. It’s best to get

into the habit of always wrapping your pages in an <fb:fbml> tag.

The next tag, <fb:request-form>, starts a special type of Facebook form.

This special form allows your application to create Facebook requests.

It takes most of the normal form parameters like action and method

along with two additional parameters, type and content. The type param-

eter specifies what text shows up on the submit button for the form. It’s

used to tell the user what type of request they are sending. The content

parameter gives the body of the message that is sent to the selected

users.

CLICK HERE to purchase this book now.
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Working with multiple users

Since Facebook is a social platform, you should plan to spend a
lot of time using two accounts. We’ll spend a lot of time sending
requests and notifications between two users. You’ll get really
frustrated if you have to log out of one account and log in to
another every time you want to view the invitation you just sent.

To make life a little easier, I normally use two different browsers,
either Firefox and Safari or Firefox and IE depending upon my
current development platform. This will allow you to stay logged
in to both accounts at once. As a bonus, you can test your CSS
in multiple browsers at the same time too!

The final tag, <fb:multi-friend-selector> is responsible for rendering the

actual friend selector. Facebook provides several different friend selec-

tors. They all achieve the same goal, but have different interfaces. This

selector allows you to click on images for your friends and includes mul-

tiple tabs. We’ll look at another friend selector in Section 5.1, Building

our first form, on page 67.

If it feels like I’m going really fast, don’t worry. I’ll cover FBML in a lot

more detail in Chapter 5, Getting Into the Facebook Canvas, on page 66.

Facebook also provides a wiki6 that includes detailed FBML documen-

tation.

So let’s try out the invitation functionality. Use the friend selector to

send a request to one of your test accounts. We set the action of the

form to new_invitation_path( ) so we’ll end up right back on this page

after sending an invitation. Try that out now. It’s pretty hard to tell that

your request was sent. Let’s make a note to fix that later.

Now that we’ve sent a request, let’s see what it looks like for the recip-

ient. Log in as the user you sent the request to and take a look at the

upper right corner of your home page. You should see a message telling

you that you have a new request. When you click on that request, you

will be taken to a page where you can read the message. It’s nice that

you can view the message, but it’s definitely a little boring. It certainly

6. http://wiki.developers.facebook.com/index.php/FBML
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