
Extracted from:

Developing Facebook Platform
Applications with Rails

This PDF file contains pages extracted from Developing Facebook Platform, published by

the Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2008The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com


Beta
Book

Agile publishing for agile developers

The book you’re reading is still under development. As part of our

Beta book program, we’re releasing this copy well before we normally

would. That way you’ll be able to get this content a couple of months

before it’s available in finished form, and we’ll get feedback to make

the book even better. The idea is that everyone wins!

Be warned. The book has not had a full technical edit, so it will con-

tain errors. It has not been copyedited, so it will be full of typos and

other weirdness. And there’s been no effort spent doing layout, so

you’ll find bad page breaks, over-long lines with little black rectan-

gles, incorrect hyphenations, and all the other ugly things that you

wouldn’t expect to see in a finished book. We can’t be held liable if you

use this book to try to create a spiffy application and you somehow

end up with a strangely shaped farm implement instead. Despite all

this, we think you’ll enjoy it!

Throughout this process you’ll be able to download updated PDFs

from your account on http://pragprog.com. When the book is finally

ready, you’ll get the final version (and subsequent updates) from the

same address. In the meantime, we’d appreciate you sending us your

feedback on this book at http://books.pragprog.com/titles/mmfacer/errata,

or by using the links at the bottom of each page.

Thank you for being part of the Pragmatic community!

Andy Hunt

http://pragprog.com
http://books.pragprog.com/titles/mmfacer/errata


Chapter 7

Profiles and the Facebook REST
API

We’ve looked at how our users interact with our application. Now it’s

time to look at how we interact with Facebook. We’ll start by looking

at the Facebook REST API. We’ll walk through the details of how it

works and then will use it build a dojo page. Next, we’ll look at the

Facebook Query Language, or FQL and use it to improve our dojo page’s

performance.

Finally, we’ll finish up by looking at one of the most popular uses of

API calls; profile updates. We’ll catch our profile up to the rest of Karate

Poke. Along the way, we’ll look at profile actions and the mobile profile

as well.

7.1 Using the REST API

We’ve used the Facebook REST API indirectly several times. Let’s look at

it in a little more detail. We’ll start by looking what happens each time

we make a request. Next, we’ll walk through some of the API methods

that are available to us. Finally, we’ll use the REST API to add more

detail to our dojo page.

How the REST API works

To really understand how the REST API works, we’ll step through an

example. In our example, we will use script/console to retrieve our name

from Facebook. Start script/console and find your User instance. Once

you have your User object, run the code below.



USING THE REST API 108

>> user.facebook_session.user.name

=> "Mike Mangino"

That doesn’t look like anything special because Facebooker encapsu-

lates the Facebook API behind a very Ruby-like façade. Behind the

scenes, Facebooker does a lot of work to retrieve our name. First, Face-

booker sends a POST to the Facebook API service. It includes a number

of parameters in the request such as the api_key of our application,

the session_key of the user making the request and the uid of the user

whose albums we want to retrieve. Additionally, Facebooker adds the

fb_sig parameter as proof that our application is making the request. We

talked about signatures earlier in Section 3.1, The details of Facebook

signatures, on page 34. By requiring all API calls to be signed, Facebook

can verify that requests are coming from an approved application.

In response to our request, Facebook will return an XML document

similar to the one shown below.

<?xml version="1.0" encoding="UTF-8"?>

<users_getInfo_response xmlns="http://api.facebook.com/1.0/" ...>

<user>

<uid>12451752</uid>

<status>

<message/>

<time>0</time>

</status>

<political/>

<pic_small>http://profile.ak.facebook.com/profile...</pic_small>

<name>Mike Mangino</name>

<quotes/>

<is_app_user>1</is_app_user>

<tv/>

<profile_update_time>0</profile_update_time>

<meeting_sex list="true"/>

<hs_info>

<hs1_name>Westerville - North High School</hs1_name>

<hs2_name/>

<grad_year>1996</grad_year>

<hs1_id>19941</hs1_id>

<hs2_id>0</hs2_id>

</hs_info>

<timezone>-6</timezone>

<relationship_status>Married</relationship_status>

...

When Facebooker gets the response, it turns the xml into Ruby objects.

Each time Facebooker needs to load more information, it sends an

HTTP request to Facebook. Each request takes time, typically between

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/mmfacer


USING THE REST API 109

a quarter and a half of a second. We’ll want to keep this timing in mind

as we use the REST API.

Using the Facebook API

We’ve looked at several uses of the Facebook API already. Since Face-

booker makes the Facebook API look just like regular Ruby objects, we

aren’t going to spend time looking at every object.1 Instead, we’ll look

at a typical example of the API.

We’re going to create a dojo page that lists the members of a dojo.

We’ll use the Facebook API to include our disciples hometown next

to their name. Let’s start by extending our User model with a home-

town method. Our hometown method will need to access the home-

town_location attribute on the Facebooker::User object.

def hometown

fb_user = Facebooker::User.new(facebook_id)

location = fb_user.hometown_location

text_location = "#{location.city} #{location.state}"

text_location.blank? ? "an undisclosed location" : text_location

end

Our method starts by creating an instance of Facebooker::User to rep-

resent our user. From there, we retrieve the hometown_location. If the

location is blank, we provide default text.

Now that we have a way of accessing a user’s hometown, we need to

build a controller and view. Let’s create the DojosController for our dojo

page. After we create that, we need to add a dojo resource.

Download chapter7/karate_poke/config/routes.rb

map.resources :dojos

Now we can create our action. We’ll use the show action for displaying a

user’s dojo. Our show action just needs to find a sensei and then retrieve

their disciples.

def show

@sensei = User.find(params[:id])

@disciples = @sensei.disciples

end

1. You can find the Facebook API documentation onine at

http://wiki.developers.facebook.com/index.php/API. The Facebooker documentation is avail-

able at http://facebooker.rubyforge.org.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/mmfacer/code/chapter7/karate_poke/config/routes.rb
http://wiki.developers.facebook.com/index.php/API
http://facebooker.rubyforge.org
http://www.pragprog.com/titles/mmfacer


THE FACEBOOK QUERY LANGUAGE 110

Now we can use the @disciples array to show our dojo in the show.fbml.erb

file.

<% if @disciples.blank? %>

<h2>You don't have any disciples

<%= link_to "Go Invite Some",new_invitation_path%>

</h2>

<% else %>

<% for disciple in @disciples %>

<div class="disciple">

<%= fb_profile_pic disciple,:size=>:thumb %>

<%= name(disciple) %>

From: <%=disciple.hometown%>

</div>

<% end %>

<% end %>

That does exactly what we would expect. Unfortunately, that page takes

a long time to load for large Dojos. I have a dojo with 40 disciples in it. It

takes 28 seconds to load. Since Facebook will show a timeout page after

only 8 seconds, I won’t ever be able to see my dojo. In the past, we’ve

used FBML tags to avoid this API performance penalty. Unfortunately,

there aren’t FBML tags for all Facebook fields. There’s got to be a way

to speed this up.

7.2 The Facebook Query Language

We’ve seen how easy it is to use the Facebook API to retrieve data about

our users. We’ve also seen how slow it can be to retrieve more than

just a small amount of data. To reduce the need for repeated API calls,

Facebook created the Facebook Query Langauge, or FQL. FQL is very

similar to SQL, the Structured Query Language. In fact, the syntax

is almost identical. Instead of retrieving our disciples’ hometowns one

user at a time, FQL allows us to get the hometowns of all of our disciples

with a single request.

Using FQL to retrieve information

Let’s look at an example FQL query. To get my Hometown location, you

can run the FQL select hometown_location from user where uid=12451752.

You can experiment with FQL using the API test console.2 Select the

fql.query method from the “Method” dropdown. You can enter your query

in the query box and click “Call Method” to see the result. If you run a

2. Available at http://developer.facebook.com/tools.php

CLICK HERE to purchase this book now.

http://developer.facebook.com/tools.php
http://www.pragprog.com/titles/mmfacer


The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style, and continue to garner awards

and rave reviews. As development gets more and more difficult, the Pragmatic Program-

mers will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Developing Facebook Platform Applications With Rails’ Home Page

http://pragprog.com/titles/mmfacer

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/mmfacer.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragprog.com/catalog

Customer Service: orders@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

http://pragprog.com/titles/mmfacer
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/mmfacer
www.pragprog.com/catalog

	Contents
	Introducing the Facebook Platform
	Build Something Cool
	Harnessing the Social Network
	Take Advantage of the Facebook Platform
	Start an Outbreak
	Developing With Rails
	Summary

	Getting Started with the Facebook Platform
	Adding the Karate Poke Application
	The Parts of a Facebook Application
	Getting Inside the App
	Setting up and Running the App
	Summary

	Creating Your First Application
	Creating a Facebook Rails Application
	Sending an Invitation
	Giving the sender some feedback
	Making our Invitation Interactive
	Updating the Profile
	Refactoring to use Helpers
	Summary

	Building the Karate Poke Object Model
	Building the User Model
	Accessing Facebook from Models
	Creating the Move Model
	Attack!
	Creating the Belt Model
	Encouraging Invitations
	Refactoring and Performance
	Summary

	Getting Into the Facebook Canvas
	Getting Interactive with Forms
	Building the battles page
	Adding Navigation
	Hiding Content From Users
	Adding Pagination
	Adding Some Style
	Summary

	Making it More Social
	Sending Notifications
	Publishing to News Feeds
	Comments and Discussion Boards
	Spreading by Invitation
	Summary

	Profiles and the Facebook REST API
	Using the REST API
	The Facebook Query Language
	The Facebook Profile In Depth
	Summary

	Integrating Facebook and Existing Websites
	Scripting with FBJS
	FBJS overview
	AJAX in FBJS
	Summary

	Testing with Facebook
	Scaling and Performance
	Getting Faster with Memcached
	Caching our Views
	Caching with refs
	API performance
	Summary

	Bibliography
	Index



