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Chapter 7

Profiles and the Facebook REST
API

We’ve looked at how our users interact with our application. Now it’s

time to look at how we interact with Facebook. We’ll start by looking

at the Facebook REST API. We’ll walk through the details of how it

works and then will use it build a dojo page. Next, we’ll look at the

Facebook Query Language, or FQL and use it to improve our dojo page’s

performance.

Finally, we’ll finish up by looking at one of the most popular uses of

API calls; profile updates. We’ll catch our profile up to the rest of Karate

Poke. Along the way, we’ll look at profile actions and the mobile profile

as well.

7.1 Using the REST API

We’ve used the Facebook REST API indirectly several times. Let’s look at

it in a little more detail. We’ll start by looking what happens each time

we make a request. Next, we’ll walk through some of the API methods

that are available to us. Finally, we’ll use the REST API to add more

detail to our dojo page.

How the REST API works

To really understand how the REST API works, we’ll step through an

example. In our example, we will use script/console to retrieve our name

from Facebook. Start script/console and find your User instance. Once

you have your User object, run the code below.
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>> user.facebook_session.user.name

=> "Mike Mangino"

That doesn’t look like anything special because Facebooker encapsu-

lates the Facebook API behind a very Ruby-like façade. Behind the

scenes, Facebooker does a lot of work to retrieve our name. First, Face-

booker sends a POST to the Facebook API service. It includes a number

of parameters in the request such as the api_key of our application,

the session_key of the user making the request and the uid of the user

whose albums we want to retrieve. Additionally, Facebooker adds the

fb_sig parameter as proof that our application is making the request. We

talked about signatures earlier in Section 3.1, The details of Facebook

signatures, on page 34. By requiring all API calls to be signed, Facebook

can verify that requests are coming from an approved application.

In response to our request, Facebook will return an XML document

similar to the one shown below.

<?xml version="1.0" encoding="UTF-8"?>

<users_getInfo_response xmlns="http://api.facebook.com/1.0/" ...>

<user>

<uid>12451752</uid>

<status>

<message/>

<time>0</time>

</status>

<political/>

<pic_small>http://profile.ak.facebook.com/profile...</pic_small>

<name>Mike Mangino</name>

<quotes/>

<is_app_user>1</is_app_user>

<tv/>

<profile_update_time>0</profile_update_time>

<meeting_sex list="true"/>

<hs_info>

<hs1_name>Westerville - North High School</hs1_name>

<hs2_name/>

<grad_year>1996</grad_year>

<hs1_id>19941</hs1_id>

<hs2_id>0</hs2_id>

</hs_info>

<timezone>-6</timezone>

<relationship_status>Married</relationship_status>

...

When Facebooker gets the response, it turns the xml into Ruby objects.

Each time Facebooker needs to load more information, it sends an

HTTP request to Facebook. Each request takes time, typically between

CLICK HERE to purchase this book now.
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a quarter and a half of a second. We’ll want to keep this timing in mind

as we use the REST API.

Using the Facebook API

We’ve looked at several uses of the Facebook API already. Since Face-

booker makes the Facebook API look just like regular Ruby objects, we

aren’t going to spend time looking at every object.1 Instead, we’ll look

at a typical example of the API.

We’re going to create a dojo page that lists the members of a dojo.

We’ll use the Facebook API to include our disciples hometown next

to their name. Let’s start by extending our User model with a home-

town method. Our hometown method will need to access the home-

town_location attribute on the Facebooker::User object.

def hometown

fb_user = Facebooker::User.new(facebook_id)

location = fb_user.hometown_location

text_location = "#{location.city} #{location.state}"

text_location.blank? ? "an undisclosed location" : text_location

end

Our method starts by creating an instance of Facebooker::User to rep-

resent our user. From there, we retrieve the hometown_location. If the

location is blank, we provide default text.

Now that we have a way of accessing a user’s hometown, we need to

build a controller and view. Let’s create the DojosController for our dojo

page. After we create that, we need to add a dojo resource.

Download chapter7/karate_poke/config/routes.rb

map.resources :dojos

Now we can create our action. We’ll use the show action for displaying a

user’s dojo. Our show action just needs to find a sensei and then retrieve

their disciples.

def show

@sensei = User.find(params[:id])

@disciples = @sensei.disciples

end

1. You can find the Facebook API documentation onine at

http://wiki.developers.facebook.com/index.php/API. The Facebooker documentation is avail-

able at http://facebooker.rubyforge.org.
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Now we can use the @disciples array to show our dojo in the show.fbml.erb

file.

<% if @disciples.blank? %>

<h2>You don't have any disciples

<%= link_to "Go Invite Some",new_invitation_path%>

</h2>

<% else %>

<% for disciple in @disciples %>

<div class="disciple">

<%= fb_profile_pic disciple,:size=>:thumb %>

<%= name(disciple) %>

From: <%=disciple.hometown%>

</div>

<% end %>

<% end %>

That does exactly what we would expect. Unfortunately, that page takes

a long time to load for large Dojos. I have a dojo with 40 disciples in it. It

takes 28 seconds to load. Since Facebook will show a timeout page after

only 8 seconds, I won’t ever be able to see my dojo. In the past, we’ve

used FBML tags to avoid this API performance penalty. Unfortunately,

there aren’t FBML tags for all Facebook fields. There’s got to be a way

to speed this up.

7.2 The Facebook Query Language

We’ve seen how easy it is to use the Facebook API to retrieve data about

our users. We’ve also seen how slow it can be to retrieve more than

just a small amount of data. To reduce the need for repeated API calls,

Facebook created the Facebook Query Langauge, or FQL. FQL is very

similar to SQL, the Structured Query Language. In fact, the syntax

is almost identical. Instead of retrieving our disciples’ hometowns one

user at a time, FQL allows us to get the hometowns of all of our disciples

with a single request.

Using FQL to retrieve information

Let’s look at an example FQL query. To get my Hometown location, you

can run the FQL select hometown_location from user where uid=12451752.

You can experiment with FQL using the API test console.2 Select the

fql.query method from the “Method” dropdown. You can enter your query

in the query box and click “Call Method” to see the result. If you run a

2. Available at http://developer.facebook.com/tools.php
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