
Extracted from:

Release It!
Design and Deploy Production-Ready Software

This PDF file contains pages extracted from Release It!, published by the Pragmatic

Bookshelf. For more information or to purchase a paperback or PDF copy, please visit

http://www.pragmaticprogrammer.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2009The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragmaticprogrammer.com

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragmaticprogrammer.com

Copyright © 2007 Michael T. Nygard.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 0-9787392-1-3

ISBN-13: 978-0-9787392-1-8

Printed on acid-free paper.

P3.0 printing, February 2009

Version: 2009-3-27

http://www.pragmaticprogrammer.com

STEADY STATE 126

5.4 Steady State

Roget’s Thesaurus (3rd ed.) offers the following definition for the word

fiddling: “To handle something idly, ignorantly, or destructively.” It

offers helpful synonyms such as fool, meddle, tamper, tinker, and mon-

key. Fiddling is often followed by the “ohnosecond”: that very short

moment in time during which you realize that you have pressed the

wrong key and brought down a server, deleted vital data, or otherwise

damaged the peace and harmony of stable operations. Every single time

a human touches a server is an opportunity for unforced errors.6

It’s best to keep people off of production systems to the greatest extent

possible. If the system needs a lot of crank-turning and hand-holding to

keep running, then administrators develop the habit of staying logged

in all the time. This inevitably leads to fiddling. To that end, the system

should be able to run indefinitely without human intervention.

Don’t encourage

fiddling. Systems should

run indefinitely without

intervention.

Unless the system is crashing every day (in

which case, look for the presence of the sta-

bility antipatterns), the most common reason

for logging in will probably be cleaning up log

files or purging data.

Any mechanism that accumulates resources

(whether it is log files in the filesystem, rows in the database, or caches

in memory) is like the bucket from those high-school calculus prob-

lems. The bucket fills up at a certain rate, based on the accumula-

tion of data. It must be drained at the same rate, or greater, or it will

eventually overflow. When this bucket overflows, bad things happen:

servers go down, databases get slow or throw errors, response times

head for the stars. The Steady State pattern says, for every mechanism

that accumulates a resource, some other mechanism must recycle that

resource. You’ll look at several types of sludge that can accumulate and

how to avoid the need for fiddling.

Data Purging

It certainly seems like a simple enough principle. Computing resources

are always finite; therefore, you cannot continually increase consump-

tion without limit. Still, in the rush of excitement about rolling out a

6. I know of one incident in which an engineer, attempting to be helpful, observed that a

server’s root disk mirror was out of sync. He executed a command to “resilver” the mirror,

bringing them back into synchronization. Unfortunately, he made a typo and synced the

good root disk from the new, totally empty drive that had just been swapped in to replace

a bad disk, thereby instantly annihilating the operating system on that server.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/mnee

STEADY STATE 127

new killer application, the next great mission-critical, bet-the-company

whatever, data purging always gets the short end of the stick. It cer-

tainly doesn’t demo as well as...well, anything else in the world demos

better than purging, really. It sometimes seems that you’ll be lucky if

the system ever runs at all in the real world. The notion that it will

run long enough to accumulate too much data to handle seems like a

“high-class problem”—the kind of problem you’d love to have.

Data purging never

makes it into the first

release, but it should.

Nevertheless, someday your little database will

grow up. When it hits the teenage years—

about two in human years—it will get moody,

sullen, and resentful. In the worst case, it will

start undermining the whole system (and it

will probably complain that nobody understands it, too).

The most obvious symptom of data growth will be steadily increasing

I/O rates on the database servers. You may also see increasing latency

at constant loads.

Data purging is nasty, detail-oriented work. Referential integrity con-

straints in the database are half the battle. It can be very difficult to

cleanly remove obsolete data without leaving orphaned rows. The other

half of the battle is ensuring that applications still work once the data

is gone.

For example, will the applications work if items are missing from the

middle of collections? (Hint: under Hibernate, they won’t!) As a conse-

quence, data purging always gets left until after the first release is out

the door. The thin rationale is, “We’ve got six months after launch to

implement purging.” (Somehow, they always say “six months.” It’s kind

of like a programmer’s estimate of “two weeks.”)

Of course, after launch, there are always emergency releases to fix crit-

ical defects or add “must-have” features from marketers tired of waiting

for the software to be done. The first six months can slip away pretty

quickly, but when that first release launches, a fuse is lit.

Purging in Practice

I gave a talk at OTUG7 that eventually led to this book. I was thrilled to

see most of my project’s team in attendance, including the sponsor. When

I was presenting this very issue about the importance of data purging and

7. The Object Technology Users’ Group in the Twin Cities of Minneapolis and St. Paul,

Minnesota. See http://www.otug.org/.

CLICK HERE to purchase this book now.

http://www.otug.org/
http://www.pragmaticprogrammer.com/titles/mnee

STEADY STATE 128

its usual neglect, I could see everyone from my project nodding along

(with their eyes open!). So you can imagine my chagrin when we launched

our first release without data purging!

We eventually implemented a very thorough purge process, based on

measuring our shortest fuse to see how long we had. It ended up being a

very close thing when we rolled out the first iteration of purging, which

took care of the highest-volume data items. That bought us time.

Subsequent releases rolled out more rigorous routines for lower-volume

accumulations.

Another type of sludge you will commonly encounter is old log files.

Log Files

Last week’s log files are about as interesting as a book full of actuarial

tables. A few rare, special people would be delighted to pore through

them. The rest of us regard them as warmly as the dumpster behind a

sushi restaurant. Last month’s log files are even worse. The main thing

these old log files do is take up valuable disk space.

Left unchecked, however, they become more than just a meaningless

pile of uninterpreted bytes. When log files grow without bound, they will

eventually fill up their containing filesystem. Whether that’s a volume

set aside for logs, the root disk, or the application installation directory

(I hope not), it means trouble. When log files fill up the filesystem, they

jeopardize stability. That’s because of the different negative effects that

can occur when the filesystem is full. On a UNIX system, the last 5% to

10% percent (depending on the configuration of the filesystem) of space

is reserved for root. That means an application will start getting I/O

errors when the filesystem is 90% or 95% full. Of course, if the applica-

tion is running as root, then it can consume the very last byte of space.

On a Windows system, an application can always use the very last byte.

In either case, the operating system will report errors back to the appli-

cation. For a Java-based system, that means java.io.IOException. For

.NET, it’s a System.IO.IOException. For C, it’s an errno value of ENOSPC.

(Show of hands, please: Who checks errno for ENOSPC after every call

to write()?) In almost every case, logging libraries do not handle the I/O

exception themselves. Instead, they wrap it or translate it and then

throw a new exception at the application code.8

8. Log4J is a pleasant exception in this regard. It uses a pluggable ErrorHandler policy to

dispose of exceptions in any of the “appenders.”

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/mnee

STEADY STATE 129

What happens next is anyone’s guess. In the best-case scenario, the

logging filesystem is separate from any critical data storage (such as

transactions), and the application code protects itself well enough that

users never realize anything is amiss. Significantly less pleasant, but

still tolerable, is a nicely worded error message asking the users to have

patience with us and please come back when we’ve got our act together.

Several rungs down the ladder is serving a stack trace to the user.

Worse yet, I saw one system where the developers had added a “uni-

versal exception handler” to the servlet pipeline. This handler would

log any kind of exception. It was reentrant, so if an exception occurred

while logging an exception, it would log both the original and the new

exception. As soon as the filesystem got full, this poor exception handler

went nuts, trying to log an ever-increasing stack of exceptions. Because

there were multiple threads, each trying to log its own Sisyphean excep-

tion, this application server was able to consume eight entire Ultra-

SPARC III CPUs—for a little while, anyway. The exceptions, multiplying

like Leonardo da Pisa’s rabbits, rapidly consumed all available memory.

This was followed shortly by a JVM crash.

Don’t leave log files on

production systems.

Copy them to a staging

area for analysis.

A less dramatic problem with large log files

is their poor signal-to-noise ratio. Consider

access logs from a web server. Other than

WebTrends-type analysis, it’s very unlikely

that you will find value in last month’s access

logs. With eight million requests, which corre-

sponds to 800,000 to 4,000,000 page views, depending on the number

of assets per page, Apache’s common log format produces more than a

1GB a day in access logs. No human being can find an event of inter-

est in that volume of data. And by the way, there’s no reason to leave

those log files on production systems. Copy them off to a staging area

for analysis.

Of course, it’s always better to avoid filling up the filesystem in the first

place. Log file rotation requires just a few minutes of configuration.

The various translations of Log4J, including Log4R (Ruby) and Log4Net

(any .NET language), all support a RollingFileAppender, which can be con-

figured to rotate log files based on size. You should always use Rolling-

FileAppender in place of the default FileAppender. In java.util.logging, the

default FileHandler can also be configured to rotate logs based on size by

setting its limit property to the maximum number of bytes to write to the

current file. The count variable controls how many old files to keep. The

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/mnee

STEADY STATE 130

Joe Asks. . .

What About Sarbannes-Oxley? Don’t We Have to Keep All
Our Log Files Forever?

You will sometimes hear people talking about logging in terms
of Sarbannes-Oxley (SOX) requirements. SOX makes many
heavy demands on IT infrastructure and operations. One of
these demands is that the company must be able to demon-
strate adequate controls on any system that produces finan-
cially significant information. In other words, if a billing system
feeds into the company’s financial reports, the company must
be able to demonstrate that nobody can monkey with the
billing system’s data.

For most customer-facing websites, this is irrelevant in reality
but often perceived as necessary. Financials come from order
management systems or credit card settlement systems, not
from web and application servers. The website cannot possibly
retain web server logs for the years required by SOX, not even
on tape or DVD. Further, could web server access logs actually
prove anything about the integrity of the financial controls? Not
likely. That comes from tracking administrator login sessions.

Unfortunately, legal issues are not always decided based on
rational probability analysis, particularly in an area as fuzzy and
ill-defined as SOX compliance. Your best bet is to work with your
company’s CIO or compliance staff. (Many companies have
dedicated SOX consultants.) They will help define how your sys-
tem can stay in compliance. Start these discussions early. They
involve legal, IT, and finance departments, so you should not
expect speedy resolution.

product of limit and count obviously determines how much space the log

files can possibly consume.

In the case of legacy code, third-party code, or code that doesn’t use

one of the excellent logging frameworks available, the logrotate utility is

ubiquitous on UNIX. For Windows, you can try building logrotate under

Cygwin, or you can hand roll a .vbs or .bat script to do the job. Logging

can be a wonderful aid to transparency. Make sure that all log files will

get rotated out and eventually purged, though, or you will eventually

spend time fixing the tool that’s supposed to help you fix the system.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/mnee

STEADY STATE 131

Between data in the database and log files on the disk, there are plenty

of ways for persistent data to clog up your system. Like jingles from old

commercials, sludge stuck in memory can clog up your application.

In-Memory Caching

Pattern 10.2, Use Caching Carefully, on page 210 has much more to

say on the subject of caching. To a long-running server, memory is like

oxygen. Cache, left untended, will suck up all the oxygen. Low memory

conditions are a threat to both stability and capacity. Therefore, when

building any sort of cache, it’s vital to ask two questions:

• Is the space of possible keys finite or infinite?

• Do the cached items ever change?

If there is no upper bound on the number of possible keys, then cache

size limits must be enforced. Unless the key space is finite and the items

are static, then the cache needs some form of cache invalidation. The

simplest mechanism is a time-based cache flush. You can also investi-

gate least recently used (LRU) or working-set algorithms, but nine times

out of ten, a periodic flush will do.

Improper use of caching is the major cause of memory leaks, which in

turn lead to horrors like daily server restarts. Nothing gets administra-

tors in the habit of being logged on to production like daily (or nightly)

chores.

Sludge buildup is a major cause of slow responses, so steady state

helps avoid that antipattern. Steady state also encourages better oper-

ational discipline by limiting system administrators’ need to log on to

the production servers.

Remember This

Avoid fiddling

Human intervention leads to problems. Eliminate the need for

recurring human intervention. Your system should run at least

for a typical deployment cycle without manual disk cleanups or

nightly restarts.

Purge data with application logic

DBAs can create scripts to purge data, but they don’t always know

how the application behaves when data is removed. Maintaining

logical integrity, especially if you use an ORM tool, requires the

application to purge its own data.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/mnee

STEADY STATE 132

Limit caching

In-memory caching speeds up applications, until it slows them

down. Limit the amount of memory a cache can consume.

Roll the logs

Don’t keep an unlimited amount of log files. Configure log file rota-

tion based on size. If you need to retain them for compliance, do it

on a nonproduction server.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/mnee

FAIL FAST 133

5.5 Fail Fast

If slow responses are worse than no response, the worst must surely be

a slow failure response. It’s like waiting through the interminable line

at the DMV, only to be told you need to fill out a different form and go

back to the end of the line. Can there be any bigger waste of system

resources than burning cycles and clock time only to throw away the

result?

If the system can determine in advance that it will fail at an operation,

it’s always better to fail fast. That way, the caller doesn’t have to tie up

any of its capacity waiting; it can get on with other work.

How can the system tell whether it will fail? What kind of secret heuris-

tics am I about to reveal? Is this the application-level equivalent of

Intel’s branch-prediction algorithms?

It’s actually much more mundane than that. There is a large class of

“resource unavailable” failures. For example, when a load balancer gets

a connection request but not one of the servers in its service pool is

functioning, it should immediately refuse the connection. Some con-

figurations have the load balancer queue the connection request for a

while, in the hopes that a server will become available in a short period

of time. This violates the Fail Fast pattern.

Check resource

availability at the start of

a transaction.

In any service-oriented architecture, the appli-

cation can tell from the service requested

roughly what database connections and exter-

nal integration points will be needed. The ser-

vice can very quickly check out the connec-

tions it will need and verify the state of the circuit breakers around

the integration points. It can tell the transaction manager to start a

transaction. This is sort of the software equivalent of the cook’s mise en

place—gathering all the ingredients it will need to service the request

before it begins. If any of the resources are not available, it can fail

immediately, rather than getting partway through the work.

Black

One of my more interesting projects was for a studio photography

company. Part of the project involved working on the software that

rendered images for high-resolution printing. The previous generation of

this software exhibited a problem that generated more work for humans

downstream: if any color profiles, images, backgrounds, or alpha masks

were not available, it “rendered” a black image—full of zero-valued pixels.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/mnee

FAIL FAST 134

This black image went into the printing pipeline and was printed, wasting

paper, chemicals, and time. Quality checkers would pull the black image

and send it back to the people at the beginning of the process for

diagnosis, debugging, and correction. Ultimately, they would fix the

problem (usually by calling developers to the printing facility) and remake

the bad print. Since the order was already late getting out the door, they

would expedite the remake—meaning that it interrupted the pipeline of

work and went to the head of the line.

When my team started on the rendering software, we applied the Fail Fast

pattern. As soon as the print job arrived, the renderer would check for the

presence of every font (missing fonts caused a similar remake, but not

because of black images), image, background, and alpha mask. It

preallocated memory, so it couldn’t fail an allocation later. The renderer

reported any such failure to the job control system immediately, before it

wasted several minutes of compute time. Best of all, “broken” orders

would be pulled from the pipeline, avoiding the case of having partial

orders waiting at the end of the process. Once we launched the new

renderer, software-induced remake rate9 dropped to zero.

The only thing we didn’t preallocate was disk space for the final image. We

violated “steady state” under the direction of the customer, who indicated

that they had their own rock-solid purging process. Turns out the

“purging process” was one guy who occasionally deleted a bunch of files.

A little less than one year after we launched, the drives filled up. Sure

enough, the one place we broke the Fail Fast principle was the one place

our renderer failed to report errors before wasting effort. It would render

images—several minutes of compute time—and then throw an IOException

in the log file.

Another way to fail fast in a web application is to perform basic para-

meter-checking in the servlet or controller that receives the request,

before loading EJBs or domain objects. Be cautious, however, that you

do not violate encapsulation of the domain objects. If you are checking

for more than null/not-null or number formatting, you should move

those validity checks into the domain objects or an application facade.

Even when failing fast, be sure to report a system failure (resources

not available) differently than an application failure (parameter viola-

tions or invalid state). Reporting a generic “error” message may cause

an upstream system to trip a circuit breaker just because some user

entered bad data and hit Reload three or four times.

9. Orders could still be remade because of other quality problems: dust in the camera,

poor exposure, bad cropping, and so on.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/mnee

FAIL FAST 135

The Fail Fast pattern improves overall system stability by avoiding slow

responses. Together with timeouts, failing fast can help avert impend-

ing cascading failures. It also helps maintain capacity when the system

is under stress because of partial failures.

Remember This

Avoid Slow Responses and Fail Fast

If your system cannot meet its SLA, inform callers quickly. Don’t

make them wait for an error message, and don’t make them wait

until they time out. That just makes your problem into their prob-

lem.

Reserve resources, verify Integration Points early

In the theme of “don’t do useless work,” make sure you will

be able to complete the transaction before you start. If critical

resources aren’t available—for example, a popped Circuit Breaker

on a required call out—then don’t waste work by getting to that

point. The odds of it changing between the beginning and the mid-

dle of the transaction are slim.

Use for input validation

Do basic user input validation even before you reserve resources.

Don’t bother checking out a database connection, fetching domain

objects, populating them, and calling validate() just to find out that

a required parameter wasn’t entered.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/mnee

HANDSHAKING 136

5.6 Handshaking

Handshaking refers to signaling between devices that regulate com-

munication between them. Serial protocols such as RS-232 (now EIA-

232C) rely on the receiver to indicate when it is ready to receive data.

Analog modems used a form of handshaking to negotiate a speed and a

signal encoding that both devices would agree upon. And, as illustrated

earlier, TCP uses a three-phase handshake to establish a socket con-

nection. TCP handshaking also allows the receiver to signal the sender

to stop sending data until the receiver is ready. Handshaking is ubiqui-

tous in low-level communications protocols but is almost nonexistent

at the application level.

The sad truth is that HTTP doesn’t handshake well. HTTP-based pro-

tocols, such as XML-RPC or WS-I Basic, have few options available for

handshaking. HTTP provides a response code of “503 Service Unavail-

able,” which is defined to indicate a temporary condition.10 Most clients,

however, will not distinguish between different response codes. If the

code is not a “200 OK,”11 “403 Authentication Required,” or “302 Found

(redirect),” the client probably treats the response as a fatal error.

Similarly, the protocols underneath CORBA, DCOM, and Java RMI are

equally bad at signaling their readiness to do business.

Handshaking is all about letting the server protect itself by throttling

its own workload. Instead of being victim to whatever demands are

made upon it, the server should have a way to reject incoming work.

The closest approximation I’ve been able to achieve with HTTP-based

servers relies on partnership between a load balancer and the web or

application servers. The web server notifies the load balancer—which is

pinging a “health check” page on the web server periodically—that it is

busy by returning either an error page (HTTP response code 503 “Not

Available” works) or an HTML page with an error message. The load

balancer then knows not to send any additional work to that particular

web server. Of course, this helps only for web services and still breaks

down if all the web servers are too busy to serve another page.

In a service-oriented architecture, the server can provide a “health

check” query for use by clients. The client would then check the health

of the server before making a request. This provides good handshak-

ing at the expense of doubling the number of connections and requests

10. See http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.
11. Many clients even treat other 200 series codes as errors!

CLICK HERE to purchase this book now.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
http://www.pragmaticprogrammer.com/titles/mnee

HANDSHAKING 137

the server must process. On the downside, most of the time for a typi-

cal web service call is spent just setting up and tearing down the TCP

connection, so making a health check call before the actual call just

doubles that connection overhead.

Handshaking can be most valuable when unbalanced capacities are

leading to slow responses. If the server can detect that it will not be able

to meet its SLAs, then it should have some means to ask the caller to

back off. If the servers are sitting behind a load balancer, then they have

the binary on/off control of stopping responses to the load balancer,

which would in turn take the unresponsive server out of the pool. This

is a crude mechanism, though. Your best bet is to build handshaking

into any custom protocols that you implement.

Circuit breakers are a stopgap you can use when calling services that

cannot handshake. In that case, instead of asking politely whether the

server can handle the request, you just make the call and track whether

it works.

Overall, handshaking is an underused technique that could be applied

to great advantage in application-layer protocols. It is an effective way

to stop cracks from jumping layers, as in the case of a cascading failure.

Remember This

Create cooperative demand control

Handshaking between client and server permits demand throt-

tling to serviceable levels. Both client and server must be built to

perform Handshaking. Most common application-level protocols—

such as HTTP, JRMP, IIOP, and DCOM—do not perform Hand-

shaking.

Consider health checks

Health-check requests are an application-level workaround for the

lack of Handshaking in the protocols. Consider using them when

the cost of the added call is much less than the cost of calling and

failing.

Build Handshaking into your own low-level protocols

If you create your own socket-based protocol, build Handshaking

into it, so the endpoints can each inform the other when they are

not ready to accept work.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/mnee

Pragmatic Methodology
Welcome to the Pragmatic Community. We hope you’ve enjoyed this title.

Do you need to get software out the door? Then you want to see how to Ship It! with less

fuss and more features.

And if you want to improve your approach to programming, take a look at the pragmatic,

effective, Practices of an Agile Developer.

Ship It!
Page after page of solid advice, all tried and tested

in the real world. This book offers a collection of

tips that show you what tools a successful team

has to use, and how to use them well. You’ll get

quick, easy-to-follow advice on modern techniques

and when they should be applied. You need this

book if: • you’re frustrated at lack of progress on

your project. • you want to make yourself and your

team more valuable. • you’ve looked at

methodologies such as Extreme Programming (XP)

and felt they were too, well, extreme. • you’ve

looked at the Rational Unified Process (RUP) or

CMM/I methods and cringed at the learning curve

and costs. • you need to get software out the

door without excuses.

Ship It! A Practical Guide to Successful Software

Projects

Jared Richardson and Will Gwaltney

(200 pages) ISBN: 0-9745140-4-7. $29.95

http://pragmaticprogrammer.com/titles/prj

Practices of an Agile Developer
Agility is all about using feedback to respond to

change. Learn how to • apply the principles of

agility throughout the software development

process • establish and maintain an agile working

environment • deliver what users really want

• use personal agile techniques for better coding

and debugging • use effective collaborative

techniques for better teamwork • move to an agile

approach

Practices of an Agile Developer:

Working in the Real World

Venkat Subramaniam and Andy Hunt

(189 pages) ISBN: 0-9745140-8-X. $29.95

http://pragmaticprogrammer.com/titles/pad

http://pragmaticprogrammer.com/titles/prj
http://pragmaticprogrammer.com/titles/pad

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style, and continue to garner awards

and rave reviews. As development gets more and more difficult, the Pragmatic Program-

mers will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Release It! Home Page

http://pragmaticprogrammer.com/titles/mnee

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragmaticprogrammer.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragmaticprogrammer.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragmaticprogrammer.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragmaticprogrammer.com/titles/mnee.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

http://pragmaticprogrammer.com/titles/mnee
http://pragmaticprogrammer.com/updates
http://pragmaticprogrammer.com/community
http://pragmaticprogrammer.com/news
pragmaticprogrammer.com/titles/mnee
www.pragmaticprogrammer.com/catalog

