
Extracted from:

Release It!
Design and Deploy Production-Ready Software

This PDF file contains pages extracted from Release It!, published by the Pragmatic

Bookshelf. For more information or to purchase a paperback or PDF copy, please visit

http://www.pragmaticprogrammer.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2009The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragmaticprogrammer.com

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragmaticprogrammer.com

Copyright © 2007 Michael T. Nygard.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 0-9787392-1-3

ISBN-13: 978-0-9787392-1-8

Printed on acid-free paper.

P3.0 printing, February 2009

Version: 2009-3-27

http://www.pragmaticprogrammer.com

Chapter 7

Case Study: Trampled by Your
Own Customers

7.1 Countdown and Launch

After years of work, the day of launch finally arrived. I had joined

this huge team (more than three hundred in total) nine months ear-

lier to help build a complete replacement for this retailer’s online store,

content management, customer service, and order-processing systems.

Destined to be the company’s backbone for the next seven years, it was

already more than a year late when I joined the team. For the previ-

ous nine months, I had been in crunch mode: taking lunches at my

desk and working late into the night. Minnesota winter will test your

soul even under the best of times. Dawn rises late, and dusk falls early.

None of us had seen the sun for months. It often felt like an inescapable

Orwellian nightmare. We had crunched through spring, the only season

worth living here for. One night I went to sleep in winter, and the next

time I looked around, I realized summer had arrived.

After nine months, I was still one of the new guys. Some of the develop-

ment teams had crunched for more than a year. They had eaten lunches

and dinners brought in by the client every day of the week. Even today,

some of them still shiver visibly remembering turkey tacos.

Today, however, was the day of triumph. All the toil and frustration,

the forgotten friends, and the divorces were going to fade away after we

launched.

The marketing team—many of whom hadn’t been seen since the

requirements-gathering meetings two years earlier—gathered in a

AIMING FOR QA 150

grand conference room for the launch ceremony, with champagne to

follow. The technologists who had turned their vague and ill-specified

dreams into reality gathered around a wall full of laptops and monitors

that we set up to watch the health of the site.

At 9 a.m., the program manager hit the big red button. (He actually

had a big red button, which was wired to an LED in the next room

where a techie clicked Reload on the browser being projected on the

big screen.) The new site appeared like magic on the big screen in the

grand conference room. Where we lurked in our lair on the other side

of the floor, we heard the marketers give a great cheer. Corks popped.

The new site was live and in production.

Of course, the real change had been initiated by the CDN.1 They had CDN: Content Delivery

Network, also known as

an “edge network”. An

accelerator that caches

images and static

content near the browser.

This removes up to 80%

of requests from your

site’s web servers.

a scheduled update to their metadata set to roll out across their net-

work at 9 a.m. Central time. The change would propagate across the

CDN’s network of servers, taking about eight minutes to be effective

worldwide. We expected to see traffic ramping up on the new servers

starting at about 9:05 a.m. (The browser in the conference room was

configured to bypass the CDN and hit the site directly, going straight

to what the CDN calls the “origin servers.” Marketing people aren’t the

only ones who know how to engage in smoke and mirrors.) In fact, we

could immediately see the new traffic coming in to the site.

By 9:05 a.m., we already had 10,000 sessions active on the servers.

At 9:10 a.m., more than 50,000 sessions were active on the site.

By 9:30 a.m., there were 250,000 sessions active on the site. Then, the

site crashed.

7.2 Aiming for QA

To understand why the site crashed so badly, so quickly, we must take

a brief look back at the three years leading up to that point.

1. In fact, the CDN had given the world a sneak preview of the new site the Saturday

before our Monday launch. Somehow, the metadata change was entered incorrectly, and

the origin server switch took place on Saturday afternoon. From the time when an exec-

utive at the client noticed the new site was visible (and taking orders!) with its partially

loaded content until we identified the CDN as the cause of the problem took about an

hour. It was then another hour to get the change reversed and propagated across the

CDN’s network. Oops!

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/mnee

AIMING FOR QA 151

Every website project is

really an enterprise

integration project.

It’s rare to see such a greenfield project these

days, for a number of good reasons. For

starters, there’s no such thing as a website

project. Every one is really an enterprise inte-

gration project with an HTML interface. Most

projects have at least some kind of back end with which they must inte-

grate. When the back end is being developed along with the front end,

you might think the result would be a cleaner, better, tighter integra-

tion. It’s possible that could happen, but it doesn’t come automatically;

it depends on Conway’s law. The more common result is that both sides

of the integration end up aiming at a moving target.

Replacing the entire commerce stack at once also brings a significant

amount of technical risk. If the system is not built with the stability pat-

terns, it probably follows a typical tightly coupled architecture. In such

a system, the overall probability of system failure is the joint probability

that any one component fails.

Even if the system is built with the stability patterns (this one wasn’t),

a completely new stack means that nobody can be sure how it will run

in production. Capacity, stability, control, and adaptability are all giant

question marks.

Early in my time on the project, I realized that the development teams

were building everything to pass testing, not to run in production.

Across the fifteen applications and more than five hundred integration

points, every single configuration file was written for the integration-

testing environment. Hostnames, port numbers, database passwords:

all were scattered across thousands of configuration files. Worse yet,

some of the components in the applications assumed the QA topol-

ogy, which we knew would not match the production environment. For

example, production would have additional firewalls not present in QA.

(This is a common “penny-wise, pound-foolish” decision that saves a

few thousand dollars on network gear but costs more in downtime and

failed deployments.) Furthermore, in QA, some applications had just

one instance that would have several clustered instances in produc-

tion. In many ways, the testing environment also reflected outdated

ideas about the system architecture that everyone “just knew” would

be different in production. The barrier to change in the test environ-

ment was high enough, however, that most of the development team

chose to ignore the discrepancies rather than lose one or two weeks of

their daily build-deploy-test cycles.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/mnee

AIMING FOR QA 152

Conway’s Law

In a Datamation article in 1968, Melvin Conway described a
sociological phenomenon: “Organizations which design sys-
tems are constrained to produce designs whose structure are
copies of the communication structures of these organizations.”
It is sometimes stated colloquially as, “If you have four teams
working on a compiler, you will get a four-pass compiler.”

Although this sounds like a Dilbert cartoon, it actually stems from
a serious, cogent analysis of a particular dynamic that occurs
during software design. For an interface to be built within or
between systems, Conway argues, two people must—in some
fashion—communicate about the specification for that inter-
face. If the communication does not occur, the interface can-
not be built.

Note that Conway refers to the “communication structure” of
the organization. This is usually not the same as the formal struc-
ture of the organization. If two developers embedded in differ-
ent departments are able to communicate directly, that com-
munication will be mirrored in one or more interfaces within the
system.

I’ve found Conway’s law useful in a proscriptive mode—
creating the communication structure that I wanted the soft-
ware to embody—and in a descriptive mode—mapping the
structure of the software to help understand the real communi-
cation structure of the organization.

Conway’s original article is available on the web at the author’s
site http://www.melconway.com/research/committees.html.

CLICK HERE to purchase this book now.

http://www.melconway.com/research/committees.html
http://www.pragmaticprogrammer.com/titles/mnee

AIMING FOR QA 153

When I started asking about production configurations, I thought it was

just a problem of finding the person or people who had already figured

these issues out. I questioned, “What source control repository are the

production configurations checked into?” and “Who can tell me what

properties need to be overridden in production?”

Sometimes when you ask questions but don’t get answers, it means

nobody knows the answers. At other times, though, it means nobody

wants to be seen answering the questions. On this project, it was some

of both.

I decided to compile a list of properties that looked as if they might need

to change for production: hostnames, port numbers, URLs, database

connection parameters, log file locations, and so on. Then I hounded

developers for answers. A property named “host” is ambiguous, espe-

cially when the host in QA has five applications on it. It could mean “my

own hostname,” it could mean “the host that is allowed to call me,” or

it could mean “the host I use to launder money.” Before I could figure

out what it should be in production, I had to know which it was.

Once I had a map of which properties needed to change in produc-

tion, it was time to start defining the production deployment structure.

Thousands of files would need changes to run in production. All of them

would be overwritten with each new software release. The idea of man-

ually editing thousands of files, in the middle of the night, for each new

release was a nonstarter. In addition, some properties were repeated

many, many times. Just changing a database password looked as if

it would necessitate editing more than a hundred files across twenty

servers, and that problem would only get worse as the site grew.

Faced with an intractable problem, I did what any good developer does:

I added a level of indirection. The key was to create a structure of over-

rides that would remain separate from the application code base. The

overrides would be structured such that each property that varied from

one environment to the next existed in exactly one place. Then each

new release could be deployed without overwriting the production con-

figuration. These overrides also had the benefit of keeping production

database passwords out of the QA environment (which developers could

access) and out of the source control system (which anyone in the com-

pany could access), thereby protecting our customers’ privacy.

In setting up the production environment, I had inadvertently volun-

teered to assist with the load test.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/mnee

LOAD TESTING 154

7.3 Load Testing

With a new, untried system, the client knew that load testing would be

critical to a successful launch. The client had budgeted a full month for

load testing, longer than I had ever seen. Before the site could launch,

marketing had declared that it must support 25,000 concurrent users.

Load testing is usually a pretty hands-off process. You define a test

plan, create some scripts (or let your vendor create the scripts), con-

figure the load generators and test dispatcher, and fire off a test run

during the small hours of the night. The next day, after the test is done,

you can analyze all the data collected during the test run. You analyze

the results, make some code or configuration changes, and schedule

another test run. Time elapsed before the next test: about three or four

days.

We knew that we would need much more rapid turnaround. So, we got

a bunch of people on a conference call: the test manager, an engineer

from the load test service, an architect from the development team,

a DBA to watch database usage, and me (monitoring and analyzing

applications and servers).

Load testing is both art and science. It is impossible to duplicate real

production traffic, so you use traffic analysis, experience, and intu-

ition to achieve as close a simulation of reality as possible. Traffic

analysis gives you nothing but variables: browsing patterns, number

of pages per session, conversion rates, think time distributions, con-

nection speeds, catalog access patterns, and so on. Experience and

intuition help you assign importance to different variables. We expected

think time, conversion rate, session duration, and catalog access to be

the most important drivers. Our first scripts provided a mix of “grazers,”

“searchers,” and “buyers.” More than 90% of the scripts would view

the home page and one product detail page. These represented bargain

hunters who hit the site nearly every day. We optimistically assigned

4% of the virtual users to go all the way through checkout. On this site,

as with most ecommerce sites, checkout is one of the most expensive

things you can do. It involves external integrations (CCVS, address nor-

malization, inventory checks, and available-to-purchase checks) and

requires more pages than almost any other session. A user who checks

out often accesses twelve pages during the session, whereas a user who

just scans the site and goes away typically hits no more than seven

pages. We believed this mix of virtual users would be slightly harsher

on the systems than real-world traffic would be.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/mnee

LOAD TESTING 155

What Is a Concurrent User?

Load testing companies often talk about “concurrent users,”
when they really mean “bots.” Some business sponsors have
picked up on the term and use it when they really mean “ses-
sions.” There is no such thing as a “concurrent user.” Unless you
are building a pure two-tier client/server system where users
connect directly to the database, the concurrent user is fiction.

Counting concurrent users is a misleading way of judging the
capacity of the system. If 100% of the users are viewing the
front page and then leaving, your capacity will be much, much
higher than if 100% of the users are actually buying something.

You cannot measure the concurrent users. There is no long-
standing connection, just a series of discrete impulses. The
servers receive this sequence of requests that they tie together
by some identifier. This series of requests gets identified with
a session—an abstraction to make programming applications
easier.

First
Request

Last
Request

Session
Timeout

Dead TimeSession Active

Notice that the user actually goes away at the start of the dead
time. The server cannot tell the difference between a user who
is never going to click again and one who just has not clicked
yet. Therefore, the server applies a timeout. It keeps the session
alive for some number of minutes after the user last clicked.

That means the session is absolutely guaranteed to last longer
than the user. Counting sessions overestimates the number of
users.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/mnee

LOAD TESTING 156

What Is a Concurrent User? (cont.)

5 sessions

2 users
t

sessions

When you look at all of the active sessions, some of them
are destined to expire without another request. The number
of active sessions is one of the most important measurements
about a web system, but it should not be confused with count-
ing users.

On the first test run, the test had ramped up to only 1,200 concurrent

users when the site got completely locked up. Every single application

server had to be restarted. Somehow, we needed to improve capacity by

twenty times.

We were on that conference call twelve hours a day for the next three

months, with many interesting adventures along the way. During one

memorable evening, the engineer from the load-testing vendor saw all

the Windows machines in their load farm start to download and install

some piece of software. The machines were being hacked while we

were on the call using them to generate load! On another occasion, it

appeared that we were hitting a bandwidth ceiling. Sure enough, some

AT&T engineer had noticed that one particular subnet was using “too

much” bandwidth, so he capped the link that was generating 80% of

our load. But, aside from the potholes and pitfalls, we also made huge

improvements to the site. Every day, we found new bottlenecks and

capacity limits. We were able to turn configuration changes around

during a single day. Code changes took a little longer, but they still

got turned around in two or three days.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/mnee

MURDER BY THE MASSES 157

We even accomplished a few major architecture changes in less than a

week. I’ll discuss these improvements in the next chapter.

This early preview of operating the site in production also gave us an

opportunity to create scripts, tools, and reports that would soon prove

to be vital.

After three months of this testing effort and more than sixty new appli-

cation builds, we had achieved a tenfold increase in site capacity. It

could handle 12,000 active sessions, which we estimated to represent

about 10,000 customers at a time (subject to all the caveats about

counting customers). Furthermore, when stressed over the 12,000 ses-

sions, the site didn’t crash anymore, although it did get a little “flaky.”

During these three months, marketing had also reassessed their tar-

get for launch. They decided they would rather have a slow site than

no site. Instead of requiring 25,000 concurrent users, they thought

12,000 sessions would suffice for launch during the slow part of the

year. Everyone expected that we would need to make major improve-

ments before the holiday season.

7.4 Murder by the Masses

So after all that load testing, what happened on the day of the launch?

How could the site crash so badly and so fast? Our first thought was

that marketing was just way off on their demand estimates. Perhaps

the customers had built up anticipation for the new site. That theory

died quickly when we found out that customers had never been told

the launch date. Maybe there was some misconfiguration or some mis-

match between production and the test environment?

Sessions are the Achilles

heel of every

application server.

The session counts led us almost straight to

the problem. It was the number of sessions

that killed the site. Sessions are the Achilles

heel of every application server. Each session

consumes resources, mainly RAM. With ses-

sion replication enabled (it was), each session gets serialized and trans-

mitted to a session backup server after each page request. That meant

the sessions were consuming RAM, CPU, and network bandwidth.

Where could all the sessions have come from?

Eventually, we realized noise was our biggest problem. All of our

load testing was done with scripts that mimicked real users with real

browsers. They went from one page to another linked page. The scripts

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/mnee

MURDER BY THE MASSES 158

all used cookies to track sessions. They were polite to the system. In

fact, the real world can be rude, crude, and vile.

Things happen in production—bad things that you can’t always pre-

dict. One of the difficulties we faced came from search engines. Search

engines drove something like 40% of visits to the site. Unfortunately, on

the day of the switch, they drove customers to old-style URLs. The web

servers were configured to send all requests for .html to the application

servers (because of the application servers’ ability to track and report

on sessions). That meant that each customer coming from a search

engine was guaranteed to create a session on the app servers, just to

serve up a 404 page.

Another huge issue we found was with the search engines spidering

the site. Some of the spiders (particularly for the lesser-known search

engines) do not keep track of cookies, for legitimate reasons. They

do not want to influence marketing data or advertising revenue. The

spiders generally expect the site to support session tracking via URL

rewriting. Without the cookies, however, they were creating a new ses-

sion on each page request. That session was then going resident in

memory until it expired (thirty minutes). We found one search engine

that was creating up to ten sessions per second.

Then there were the scrapers and shopbots. We found nearly a dozen

high-volume page scrapers. Some of them were very clever about hid-

ing their origins. One in particular sent page requests from a variety

of small subnets to disguise the fact that they were all originating at

the same source. In fact, even consecutive requests from the same IP

address would use different User-Agent strings to mask the true origin. User-Agent: an HTTP

header sent by the

browser to identify itself.

Nearly all browsers

claim to be some form of

Mozilla, even Microsoft’s

Internet Explorer.

ARIN2 can still identify the source IP addresses as belonging to the same

entity, though. These commercial scrapers actually sell a subscription

service. A retailer wanting to keep track of a competitor’s prices can

subscribe to a report from one of these outfits. It delivers a weekly or

daily report of the competitor’s items and prices. That’s one reason why

some sites won’t show you a sale price until you put the item in your

cart. Of course, none of these scrapers properly handled cookies, so

each of them was creating additional sessions.

We also had the amateur shopbots to handle. Several source IPs hit the

same product detail page URL from the old site once per minute. It took

2. See http://www.arin.net.

CLICK HERE to purchase this book now.

http://www.arin.net
http://www.pragmaticprogrammer.com/titles/mnee

THE TESTING GAP 159

us a while to identify the product, which ultimately turned out to be a

PlayStation 2. Three years after PS2’s famous shortages, scripts were

still running to look for the quantity available on the console, which

created even more sessions.

Finally, there were the sources that we just called “random weird

stuff.”3 For example, one computer on a Navy base would show up

as a regular browsing session, and then about fifteen minutes after the

last legitimate page request, we’d see the last URL get requested again

and again. More sessions.

7.5 The Testing Gap

Despite the massive load-testing effort, the site still crashed when it

confronted the real world. Two things were missing in our testing.

First, we tested the application the way it was meant to be used. Test

scripts would request one URL, wait for the response, and then request

another URL that was present on the response page. None of the load-

testing scripts tried hitting the same URL, without using cookies, 100

times per second. If they had, we probably would have called the test

“unrealistic” and ignored that the servers crashed. Since the site used

only cookies for session tracking, not URL rewriting, all of our load test

scripts used cookies.

In short, all the test scripts obeyed the rules. It would be like an applica-

tion tester who only ever clicked buttons in the right order. Most testers

I’ve known are perverse enough that if you tell them the “happy path”

through the application, that’s the last thing they’ll do. It should be the

same with load testing. “Noise” might just bleed away some amount of

your capacity, but it could bring your site down.

Don’t just follow the

“happy path.”

Second, the application developers did not

build in the kind of safety devices that would

cut off bad things. When something was going

wrong, the application would keep sending

threads into the danger zone. Like a car crash on a foggy freeway, the

new request threads would just pile up into the ones that were already

broken or hung.

3. OK, we didn’t really use the word stuff.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/mnee

AFTERMATH 160

7.6 Aftermath

The grim march in the days and weeks following launch produced

impressive improvements. The CDN’s engineers redeemed themselves

for their “sneak preview” error before launch. In one day, they used

their edge server scripting to help shield the site from some of the worst

offenders. They added a gateway page that served three critical capa-

bilities. First, if the requester did not handle cookies properly, the page

redirected the browser to a separate page that explained how to enable

cookies. Second, we could set a throttle to determine what percentage of

new sessions would be allowed. If we set the throttle to 25%, then only

25% of requests for this gateway page would serve the real home page.

The rest of the requests would receive a very politely worded message

asking them to come back later. Over the next three weeks, we would

have an engineer watching the session counts at all times, ready to pull

back on the throttle anytime the volume appeared to be getting out of

hand. If the servers got completely overloaded, it would take nearly an

hour to get back to serving pages, so it was vital to use the throttle to

keep them from getting saturated. By the third week, we were able to

keep the throttle at 100% all day long. Third, we could block specific

IP addresses from hitting the site. Whenever we observed one of the

shopbots or request floods, we would add them to the blocked list.

All those things could have been done as part of the application, but

in the mad scramble following launch, it was easier and faster to have

the CDN handle them for us. We had our own set of rapid changes to

pursue.

The home page was completely dynamically generated, from the

JavaScript for the drop-down category menus to the product details

and even to the link on the bottom of the page for “terms of use.” One of

the application platform’s key selling points was personalization. Mar-

keting was extremely keen on that feature but had not decided how

to use it. So, this home page being generated and served up five mil-

lion times a day was exactly the same every single time it got served.

It required more than 1,000 database transactions to build the page.

(Even if the data was already cached in memory, a transaction was still

created because of the way the platform works.) The JavaScript drop-

down menus with nice rollover effects required traversal of eighty-odd

categories. Also, traffic analysis showed that a significant percentage

of visits per day just hit the main page. Most of them did not present

an identification cookie, so personalization wasn’t even possible. Still, if

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/mnee

AFTERMATH 161

the application server got involved in sending the home page, it would

take time and create a session that would occupy memory for the next

thirty minutes. So, we quickly built some scripts that would make a

static copy of the home page and serve that for any unidentified cus-

tomers.

Have you ever looked at the legal conditions posted on most commerce

sites? They say wonderful things like “By viewing this page you have

already agreed to the following conditions....” It turns out that those

conditions exist for one reason. When the retailer discovers a screen

scraper or shopbot, they can sic the lawyers on the offending party.

We kept the legal team busy those first few days. After we identified

another set of illicit bots hitting the site to scrape content or prices, the

lawyers would send cease-and-desist notices; most of the time, the bots

would stop. (Like shooing a dog away from the dinner table, though,

they always come back—sometimes even in disguise.)

One of the most heroic efforts in that chaotic time happened the week

of launch. The IT operations manager identified six extra servers that

matched our configuration. They had been requisitioned by a differ-

ent department but were not in use yet. The manager reallocated them

for the commerce site (and presumably ordered replacements) as extra

application servers. One of our sysadmins spent a marathon 36-hour

shift provisioning them: operating system install, network configura-

tion, filesystem configuration, SAN access, and monitoring. Once he

got to that point, we had someone drive him back to his hotel room

where he could crash. I was then able to get the application server and

applications installed and configured the same day. We doubled the

capacity of the application server layer in two days, from bare metal to

serving requests.

This particular application server’s session failover mechanism is based

on serialization. The user’s session remains bound to the original server

instance, so all new requests go back to the instance that already has

the user’s session in memory. After every page request, the user’s ses-

sion is serialized and sent over the wire to a “session backup server.”

The session backup server keeps the sessions in memory. Should the

user’s original instance go down—deliberately or otherwise—the next

request gets directed to a new instance, chosen by the load manager.

The new instance then attempts to load the user’s session from the

session backup server. This mechanism works well (and scales surpris-

ingly well), considering that the sessions are all kept in memory rather

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/mnee

AFTERMATH 162

than in a database or on disk; that is, it scales well so long as the ses-

sion data is kept small. For instance, it is common to include the user’s

ID, her shopping cart ID, and maybe some information about her cur-

rent search, such as keywords and results page index. It would not be

typical to put the entire shopping cart in the session in serialized form

or the entire search results (up to 2,000 results). Sadly, that is exactly

what we found in the sessions. We had no choice but to turn off session

failover.

All these rapid response actions share some common themes. First,

nothing is as permanent as a temporary fix. Most of these remained

in place for the next year or two. Second, they all cost a tremendous

amount of money, mainly in terms of lost revenue. Clearly, customers

who get throttled away from the site are less likely to place an order. (At

least, they are less likely to place an order at this site.) Disabling session

failover meant that any user in the checkout process on an instance

would not be able to finish checking out when that instance went down.

Instead of getting an order confirmation page, for example, they would

get sent back to their shopping cart page. Most customers who got

sent back to their cart page, when they had been partway through the

checkout process, just went away. Making the home page static made

personalization difficult, even though it had been one of the original

goals of the whole rearchitecture project. The direct cost of doubling

the application server hardware is obvious, but it also brought added

operational cost. Finally, there is the opportunity cost of spending the

next year in remediation projects instead of rolling out new, revenue-

generating features.

The worst part is that no amount of those losses were necessary. It

is now more than two years since that site launched. Today, the site

handles more than four times the load, on fewer servers, without hav-

ing gone through a hardware refresh. The software has improved that

much. If the site had originally been built the way it is now, the engi-

neers would have been able to join marketing’s party and pop a few

champagne corks instead of popping fuses.

CLICK HERE to purchase this book now.

http://www.pragmaticprogrammer.com/titles/mnee

Pragmatic Methodology
Welcome to the Pragmatic Community. We hope you’ve enjoyed this title.

Do you need to get software out the door? Then you want to see how to Ship It! with less

fuss and more features.

And if you want to improve your approach to programming, take a look at the pragmatic,

effective, Practices of an Agile Developer.

Ship It!
Page after page of solid advice, all tried and tested

in the real world. This book offers a collection of

tips that show you what tools a successful team

has to use, and how to use them well. You’ll get

quick, easy-to-follow advice on modern techniques

and when they should be applied. You need this

book if: • you’re frustrated at lack of progress on

your project. • you want to make yourself and your

team more valuable. • you’ve looked at

methodologies such as Extreme Programming (XP)

and felt they were too, well, extreme. • you’ve

looked at the Rational Unified Process (RUP) or

CMM/I methods and cringed at the learning curve

and costs. • you need to get software out the

door without excuses.

Ship It! A Practical Guide to Successful Software

Projects

Jared Richardson and Will Gwaltney

(200 pages) ISBN: 0-9745140-4-7. $29.95

http://pragmaticprogrammer.com/titles/prj

Practices of an Agile Developer
Agility is all about using feedback to respond to

change. Learn how to • apply the principles of

agility throughout the software development

process • establish and maintain an agile working

environment • deliver what users really want

• use personal agile techniques for better coding

and debugging • use effective collaborative

techniques for better teamwork • move to an agile

approach

Practices of an Agile Developer:

Working in the Real World

Venkat Subramaniam and Andy Hunt

(189 pages) ISBN: 0-9745140-8-X. $29.95

http://pragmaticprogrammer.com/titles/pad

http://pragmaticprogrammer.com/titles/prj
http://pragmaticprogrammer.com/titles/pad

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style, and continue to garner awards

and rave reviews. As development gets more and more difficult, the Pragmatic Program-

mers will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Release It! Home Page

http://pragmaticprogrammer.com/titles/mnee

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragmaticprogrammer.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragmaticprogrammer.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragmaticprogrammer.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragmaticprogrammer.com/titles/mnee.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

http://pragmaticprogrammer.com/titles/mnee
http://pragmaticprogrammer.com/updates
http://pragmaticprogrammer.com/community
http://pragmaticprogrammer.com/news
pragmaticprogrammer.com/titles/mnee
www.pragmaticprogrammer.com/catalog

