Extracted from:

Release It! Second Edition
Design and Deploy Production-Ready Software

This PDF file contains pages extracted from Release It! Second Edition, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or
PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Raleigh, North Carolina


http://www.pragprog.com

Th
Pr emati(:
Ogramimers

Release It!
Second Edition

Design and Deploy
Production-Ready Software

Qo

Michael T. Nygard
Edited by Katharine Dvoralk



Release It! Second Edition
Design and Deploy Production-Ready Software

Michael T. Nygard

The Pragmatic Bookshelf

Raleigh, North Carolina



Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt

VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Development Editor: Katharine Dvorak
Indexing: Potomac Indexing, LLC

Copy Editor: Molly McBeath

Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-68050-239-8

Encoded using the finest acid-free high-entropy binary digits.

Book version: P1.0—January 2018


https://pragprog.com
support@pragprog.com
rights@pragprog.com

The Principle of Least Privilege

The principle of “least privilege” mandates that a process should have the
lowest level of privilege needed to accomplish its task. This never includes
running as root (UNIX/Linux) or administrator (Windows). Anything applica-
tion services need to do, they should do as nonadministrative users.

I've seen Windows servers left logged in as administrator for weeks at a time
—with remote desktop access—because some ancient piece of vendor software
required it. (This particular package also was not able to run as a Windows
service, so it was essentially just a Windows desktop application left running
for a long time. That is not production ready!)

Software that runs as root is automatically a target. Any vulnerability in root-
level software automatically becomes a critical issue. Once an attacker has
cracked the shell to get root access, the only way to be sure the server is safe
is to reformat and reinstall.

To further contain vulnerabilities, each major application should have its own
user. The “Apache” user shouldn’t have any access to the “Postgres” user, for
example.

Opening a socket on a port below 1024 is the only thing that a UNIX applica-
tion might require root privilege for. Web servers often want to open port 80
by default. But a web server sitting behind a load balancer (see Load Balancing,

on page ?) can use any port.

Containers and Least Privilege

Containers provide a nice degree of isolation from each other. Instead of cre-
ating multiple application-specific users on the host operating system, you
can package each application into its own container. Then the host kernel
will keep the containerized applications out of each others’ filesystems. That’s
helpful for reducing the containers’ level of privilege.

Be careful, though. People often start with a container image that includes
most of an operating system. Some containerized applications run a whole
init system inside the container, allowing multiple shells and processes. At
that point, the container has its own fairly large attack surface. It must be
secured. Sadly, patch management tools don’t know how to deal with contain-
ers right now. As a result, a containerized application may still have operating
system vulnerabilities that IT patched days or weeks ago.

The solution is to treat container images as perishable goods. You need an
automated build process that creates new images from an upstream base

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/mnee2
http://forums.pragprog.com/forums/mnee2

°6

and your local application code. Ideally this comes from your continuous
integration pipeline. Be sure to configure timed builds for any application
that isn’t still under active development, though.

Configured Passwords

Passwords are the Brazil nut of application security; every mix has them, but
nobody wants to deal with them. There’s obviously no way that somebody
can interactively key in passwords every time an application server starts up.
Therefore, database passwords and credentials needed to authenticate to
other systems must be configured in persistent files somewhere.

As soon as a password is in a text file, it is vulnerable. Any password that
grants access to a database with customer information is worth thousands
of dollars to an attacker and could cost the company thousands in bad pub-
licity or extortion. These passwords must be protected with the highest level
of security achievable.

At the absolute minimum, passwords to production databases should be kept
separate from any other configuration files. They should especially be kept out
of the installation directory for the software. (I've seen operations zip up the
entire installation folder and ship it back to development for analysis, for
example, during a support incident.) Files containing passwords should be
made readable only to the owner, which should be the application user. If the
application is written in a language that can execute privilege separation, then
it’s reasonable to have the application read the password files before downgrad-
ing its privileges. In that case, the password files can be owned by root.

Password vaulting keeps passwords in encrypted files, which reduces the
security problem to that of securing the single encryption key rather than
securing multiple text files. This can assist in securing the passwords, but it
is not, by itself, a complete solution. Because it’s easy to inadvertently change
or overwrite file permissions, intrusion detection software such as Tripwire
should be employed to monitor permissions on those vital files.*

AWS Key Management Service (KMS) is useful here. With KMS, applications
use API calls to acquire decryption keys. That way the encrypted data (the
database passwords) don'’t sit in the same storage as the decryption keys! If
you use Vault, then it holds the database credentials directly in the vault.

In every case, it's important to expunge the key from memory as soon as
possible. If the application keeps the keys or passwords in memory, then

22. www.tripwire.com

« Click HERE to purchase this book now. discuss


http://www.tripwire.com
http://pragprog.com/titles/mnee2
http://forums.pragprog.com/forums/mnee2

Configured Passwords ® 7

memory dumps will also contain them. For UNIX systems, core files are just
memory dumps of the application. An attacker that can provoke a core dump
can get the passwords. It’s best to disable core dumps on production applica-
tions. For Windows systems, the “blue screen of death” indicates a kernel
error, with an accompanying memory dump. This dump file can be analyzed
with Microsoft kernel debugging tools; and depending on the configuration
of the server, it can contain a copy of the entire physical memory of the
machine—passwords and all.

« Click HERE to purchase this book now. discuss


http://pragprog.com/titles/mnee2
http://forums.pragprog.com/forums/mnee2



