
Extracted from:

Modern Vim
Craft Your Development Environment

with Vim 8 and Neovim

This PDF file contains pages extracted from Modern Vim, published by the Prag-
matic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Modern Vim
Craft Your Development Environment

with Vim 8 and Neovim

Drew Neil

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Development Editor: Katharine Dvorak
Copy Editor: Jasmine Kwityn
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-262-6
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—May 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Tip 10

Running a Build and Navigating Failures

When you run a build tool and everything works fine, you can usually disregard
any output the tool produced. But when the build tool fails, it may emit output
that contains clues about the line of code where the failure occurred. Using
Vim’s compiler plugins and the :make command, you can run a build tool and
capture the output so that you can refer to it later.

Better still, Vim can parse any references to filenames and line numbers,
allowing you to quickly jump to the line of code where an error originated.
However, the fact that Vim’s built-in :make command runs synchronously can
be irritating, especially for long-running builds. The Dispatch plugin solves this
by providing various adapters that allow you to run build tools asynchronously.

Preparation
To follow the examples in this tip, you’ll need to install Tim Pope’s Dispatch
plugin.1 You can install it to your bundle package like this:

$ cd $VIMCONFIG/pack/bundle/start➾

$ git clone https://github.com/tpope/vim-dispatch.git➾

Dispatch was ahead of its time when it was released in 2013. Vim had no
support for running external commands asynchronously, and Neovim didn’t
even exist. Make sure you check out the Introducing dispatch.vim screencast,2

and enjoy the unusual fanfare that announced the plugin’s release.

The Dispatch plugin supports several different adapters, allowing you to pick
a strategy for running async commands that suits you. For Vim 8, I recom-
mend using the tmux adapter. For Neovim, I recommend the neovim adapter.

Enabling the tmux Adapter

The Dispatch plugin has a built-in tmux adapter, which runs programs in a
tmux pane or window. To use this adapter, start a tmux session and then
launch Vim inside of that session:

$ tmux➾

$ vim➾

1. https://github.com/tpope/vim-dispatch
2. https://vimeo.com/63116209

• Click HERE to purchase this book now. discuss

https://github.com/tpope/vim-dispatch
https://vimeo.com/63116209
http://pragprog.com/titles/modvim
http://forums.pragprog.com/forums/modvim

When you run Vim inside of a tmux session, Dispatch will select the tmux adapter
by default. I recommend reading tmux 2 [Hog16] to learn more about tmux.

Enabling the Neovim Adapter

For Neovim, you’ll want to install an extra plugin: vim-dispatch-neovim3 by
Richard Adenling. This adds a neovim adapter, which makes Dispatch run
programs using Neovim’s terminal emulator. You can install it to your bundle
package like this:

$ cd $VIMCONFIG/pack/bundle/start➾

$ git clone https://github.com/radenling/vim-dispatch-neovim.git➾

When using Neovim, Dispatch will select the neovim adapter automatically
(even if you’re running Neovim inside of a tmux session). This is my preferred
way of using Dispatch. I find it satisfying being able to run programs asyn-
chronously without relying on tools such as tmux. I recommend reading
Chapter 5, Neovim's Built-In Terminal Emulator, on page ? to learn more
about Neovim’s terminal emulator.

3. https://github.com/radenling/vim-dispatch-neovim

• 6

• Click HERE to purchase this book now. discuss

https://github.com/radenling/vim-dispatch-neovim
http://pragprog.com/titles/modvim
http://forums.pragprog.com/forums/modvim

Vim 8 Job Adapter for the Dispatch Plugin

If you’d like to use Vim 8’s job control feature for running tasks asynchronously, you
might want to try out an experimental branch of Dispatch. Instead of installing the
master branch, you could install the job branch like this:

$ cd $VIMCONFIG/pack/bundle/start➾

$ git clone -b job https://github.com/tpope/vim-dispatch.git➾

The job strategy has the benefit of being self-contained, meaning that you can use
Dispatch to perform async tasks without having to depend on tmux. But this strategy
also has some limitations. For example, jobs aren’t well-suited for commands that
read from stdin, so if you’re running a command that has an interactive mode, or needs
to show a password prompt, the task may fail in unexpected ways. For this reason,
the job branch remains experimental. With the prospect of a built-in :terminal command
coming soon (see the appendix, Adding :terminal support, on page ?), it may be that
a terminal adapter would render these issues moot.

Setting Up the Demo Project

The source code that accompanies this book includes a good-day directory. In
there you’ll find a simple TypeScript project called good-day. Switch to that
directory and use npm to install the TypeScript compiler and its dependencies:

$ cd code/good-day➾

$ npm install➾

good-day@1.0.0 /Users/drew/code/good-day❮

├── tslint@5.7.0
└── typescript@2.5.2

The TypeScript compiler binary is installed in the node_modules/.bin directory.
You can execute it like this:

$./node_modules/.bin/tsc --version➾

Version 2.5.2❮

For this tip, it’s important you are able to run the TypeScript Compiler without
having to specify the full path. To make this work, modify your environment
so that the ./node_modules/.bin appears at the start of your path. The npm bin
command outputs the full pathname for that directory:

$ export PATH=$(npm bin):$PATH➾

$ tsc --version➾

Version 2.5.2❮

• Click HERE to purchase this book now. discuss

Running a Build and Navigating Failures • 7

http://pragprog.com/titles/modvim
http://forums.pragprog.com/forums/modvim

Now, run tsc to build the project:

$ tsc➾

Open the build/greeting.html file in a browser with JavaScript enabled and you
should see a greeting message wishing you a good day.

Making Vim Call the Compiler (a Naive Approach)
Open the sample TypeScript file in Vim:

$ vim src/greeting.ts➾

You can use Vim’s :!{cmd} command to invoke the TypeScript compiler on the
current file:

:!tsc --outDir build %➾

Note that the :!{cmd} runs synchronously, meaning that you can’t interact
with Vim until the command finishes execution. The % symbol is a shorthand
for the filepath of the active buffer (:help cmdline-special). This command
generates a greeting.js file in the build directory. When everything goes smoothly,
the compiler produces no output on stdout.

Now, let’s see what happens when things don’t go so smoothly. The good-day
directory contains a break-things.diff patch file. Apply the patch by running:

:!patch % break-things.diff➾

:edit! src/greeting.ts➾

Now, try compiling the TypeScript file again:

:!tsc --outDir build %➾

src/greeting.ts(9,7): error TS2322: Type '1' is not assignable...❮

src/greeting.ts(23,22): error TS2345: Argument of type '"now"'...
[Process exited 2]

The TypeScript compiler prints a couple of error messages. These can help
you fix the issues by showing you the filename, line number, and column
number where each error originated. But you’ve got a problem: With your
next keystroke, the output from :!{cmd} is dismissed. That’s inconvenient if
you want to refer to those error messages.

There are two things about the :!{cmd} workflow that we could improve upon.
First, it would be better if the output from the build was captured in such a
way that we could easily refer to it later. Next, it would be handy if there was
an option to run a build asynchronously so that you could continue to interact
with Vim while the build executes. We’ll tackle each of these issues one by one.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/modvim
http://forums.pragprog.com/forums/modvim

Capturing Compiler Output with :make
If you want to capture the output from an external program, you should reach
for the :make command (:help :make). As the name suggests, you can use this
to run a build that’s configured by a Makefile. But you can also use the :make
command to run other types of builds. In this demonstration, we’ll continue
to use the TypeScript compiler.

To use the :make command, you need to configure two options: ‘makeprg’ and
‘errorformat’. These depend upon each other, so if you change the value of
‘makeprg’, it’s likely that you’ll also want to change the value of ‘errorformat’ (and
vice versa). The best way to ensure that you change both options simultane-
ously is by loading a compiler plugin.

For the demonstration in this tip, you can use this simple compiler plugin:

compiler/typescript.vim
let current_compiler = "typescript"
CompilerSet makeprg=tsc\ $*\ --outDir\ build\ %
CompilerSet errorformat=%+A\ %#%f\ %#(%l\\\,%c):\ %m,%C%m

To install this, create an after/compiler directory in your $VIMCONFIG directory.
Then copy the typescript.vim file there:

$ mkdir -p $VIMCONFIG/after/compiler➾

$ cp code/compiler/typescript.vim $VIMCONFIG/after/compiler/➾

We’re using the after/compiler directory (rather than compiler) to make sure this
compiler overrides any other typescript compilers you may have installed on
your system. Open the src/greeting.ts file in Vim, then activate the typescript
compiler by running:

:compiler typescript➾

That sets buffer-local ‘makeprg’ and ‘errorformat’ options to the values specified
in the compiler plugin. Now you can compile your TypeScript file just by
running:

:make➾

!tsc --outDir build src/greeting.ts❮

Vim executes the command specified by the ‘makeprg’ option, then populates
the quickfix list using any output produced by that command. If you’re not
seeing any output, use the break-things.diff patch and run :make again. To inspect
the output from the build, open the quickfix window:

:copen➾

• Click HERE to purchase this book now. discuss

Running a Build and Navigating Failures • 9

http://media.pragprog.com/titles/modvim/code/compiler/typescript.vim
http://pragprog.com/titles/modvim
http://forums.pragprog.com/forums/modvim

You can traverse the list of errors using the commands: :cfirst, :cprev, :cnext, :clast.
These commands allow you to quickly jump between errors, fixing them as
you go.

TypeScript Support for Vim

As I write this, Vim has no built-in support for TypeScript (although that may have
changed by the time you read this). If you’d like to add TypeScript support, you can
install the typescript-vim plugina by Leaf Garland. With this installed, Vim will recog-
nize the .ts extension and enable syntax highlighting for TypeScript files. It also
includes a compiler plugin for TypeScript.

a. https://github.com/leafgarland/typescript-vim

Running :make Asynchronously
The killer feature of the :make command is that it populates the quickfix list,
allowing you to navigate easily between any error messages. But there’s a
downside to this command: it runs synchronously. That means you can’t
interact with Vim until the build completes. This is of little consequence if
your build completes quickly, but for long-running builds, it can interrupt
your workflow.

You can simulate a long-running build by installing the tardyscript compiler,
which is provided with this book’s source code. This is identical to the typescript
compiler we used earlier, except it sleeps for five seconds before launching
the build:

$ cp code/compiler/tardyscript.vim $VIMCONFIG/after/compiler/➾

Enable the tardyscript compiler and start another build:

:compiler tardyscript➾

:make➾

!sleep 5;tsc --outDir build src/greeting.ts❮

This build takes at least five seconds to complete. During that time you can’t
interact with Vim in any way. (Now for the moment we’ve been building up to...)

The dispatch plugin provides a :Make command (note the capital “M”), which
behaves like an asynchronous version of Vim’s built-in :make command. Try
it out, once again using the tardyscript compiler:

• 10

• Click HERE to purchase this book now. discuss

https://github.com/leafgarland/typescript-vim
http://pragprog.com/titles/modvim
http://forums.pragprog.com/forums/modvim

:compiler tardyscript➾

:Make➾

If you’re using the neovim adapter, Dispatch opens a terminal buffer in a hori-
zontal split and runs the program there. With the tmux adapter, Dispatch
creates a new tmux pane and runs the program there. If the build fails, the
output is used to populate the quickfix list and the quickfix window opens
automatically. If the build succeeds, the quickfix window does not open
automatically.

Dispatch also provides a :Make! variation. Try it out and observe the differences:

:Make!➾

With the neovim adapter, Dispatch uses jobstart() to run the program in the
background. With the tmux adapter, Dispatch creates a new tmux window
and runs the program there, while keeping the current tmux window active.
The quickfix window doesn’t automatically open when the program exits, but
you can open the quickfix window at your convenience using the :Copen
command.

To summarize: the :Make command lets you run a build in the foreground,
while the :Make! command lets you run a build in the background. A foreground
build is appropriate for shorter tasks (“build this file”), while a background
build is more suitable for long-running tasks (“build the whole project”).
Whichever method you choose, you can continue to operate Vim while the
build executes. It makes no difference if the build takes five seconds or five
minutes.

When a build is running asynchronously, you should be cautious about
saving changes to files, because this could affect the build. As a rule of thumb,
it’s okay to use Vim for reading code, but not wise to make changes while a
build is running.

Incorporating Compiler Plugins to Your Workflow
When you get the hang of Vim’s compiler plugins, you might find yourself
wanting to use :make for more than just building the project. For example, the
quickfix list could be useful if you want to lint all of the files in your project,
or if you want to run your test suite. Check out the next tip to see how the
Dispatch plugin can further streamline your workflow.

• Click HERE to purchase this book now. discuss

Running a Build and Navigating Failures • 11

http://pragprog.com/titles/modvim
http://forums.pragprog.com/forums/modvim

