
Extracted from:

Modern Vim
Craft Your Development Environment

with Vim 8 and Neovim

This PDF file contains pages extracted from Modern Vim, published by the Prag-
matic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2018 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Modern Vim
Craft Your Development Environment

with Vim 8 and Neovim

Drew Neil

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Managing Editor: Brian MacDonald
Supervising Editor: Jacquelyn Carter
Development Editor: Katharine Dvorak
Copy Editor: Jasmine Kwityn
Indexing: Potomac Indexing, LLC
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2018 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-262-6
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—May 2018

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Introduction
Vim’s core functionality makes it a good programmer’s text editor. Turning
Vim into a full-blown development environment means combining it with
other tools and extending its capabilities with plugins. In Practical Vim [Nei15],
I focused on the core features of the editor. In this book, I show you how to
extend Vim and make it the centerpiece of a Unix-based IDE.

How This Book Is Structured
Modern Vim is a recipe book. It’s not designed to be read from start to finish.
Each chapter is a collection of tips that are related by a theme, and each tip
demonstrates a particular feature in action. Some tips are self-contained.
Others depend upon material elsewhere in the book. Those tips are cross-
referenced so you can find everything easily.

Modern Vim doesn’t progress from novice to advanced level, but each individ-
ual chapter does. A less-experienced Vim user might prefer to make a first
pass through the book, reading just the early tips in each chapter. A more
advanced user might choose to focus on the later tips or move around the
book as needed. If it helps, you can think of this as a “Choose Your Own
Adventure” book.

A Note on Vim Versions
To follow the tips in this book, you’re going to need an up-to-date installation
of Vim. (The clue is right there in the book’s title!) You have two options: use
version 8 of Vim or version 0.2 of Neovim.

Vim Version 8
Version 8 of Vim was released in September 2016. It introduced some new
features that you’ll learn about in this book, such as packages and job control.
As a minimum requirement, you’ll need to be running version 8 of Vim,

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/modvim
http://forums.pragprog.com/forums/modvim

compiled with the huge feature set. You’ll find instructions on how to install
Vim 8 in Tip 1, Installing Vim 8, on page ?.

All of the tips in this book have been tested with version 8.0 of Vim, apart
from a handful of tips which have been written especially for Neovim.

Neovim
Neovim is a community-run fork of Vim that can be used as a drop-in
replacement for Vim. It supports all of the same features Vim 8 offers and
more. You’ll find instructions on how to install Neovim in Tip 2, Switching to
Neovim, on page ?.

All of the tips in this book have been tested with Version 0.2.2 of Neovim.

Terminology
In many ways, Vim 8 and Neovim are interchangeable. When I use the word
“Vim” by itself, you can read that as “Vim 8,” or you can read it as “Neovim.”
If I want to make a specific point about one particular version of Vim, then I
will specify “Vim 8” or “Neovim” to make that clear.

If you see this signpost at the start of a tip, it means that the tip is relevant
only for Neovim:

Neovim only

If a tip only applies to Vim 8, you’ll see a signpost like this:

Vim 8 only

If you see no such signposts at the start of a tip, then that tip should work
just as well in both versions. Most of the tips in this book work in both Vim
8 and Neovim.

Contextual Instructions Using $VIMCONFIG
Vim 8 and Neovim follow different conventions on where to keep their config-
uration files. Vim 8 typically places them in a ~/.vim directory, whereas Neovim
uses the ~/.config/nvim directory. These are important details, but it would get
distracting if I mentioned them every time I referenced a runtime file.

To avoid this problem, we’ll refer to certain files and directories using environ-
ment variables $MYVIMRC, $VIMCONFIG, and $VIMDATA. When you see $VIMCONFIG,

Introduction • vi

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/modvim
http://forums.pragprog.com/forums/modvim

you can interpret that as ~/.vim if you are using Vim, or ~/.config/nvim if you are
using Neovim. You’ll find complete instructions on how to interpret these
variables in Contextual Instructions for Vim, on page ? and Contextual
Instructions for Neovim, on page ?.

Other Software Requirements
In Modern Vim, many of the lessons are illustrated with practical examples.
You’ll learn best if you actually follow the examples, and in some cases that
means you’re going to need to run other programs besides Vim.

JavaScript, Node.js, and npm
Many examples in this book are illustrated using JavaScript, which has
become something of a universal language in recent years. Even if JavaScript
is not your first choice for a programming language, you probably know
enough “pidgin JavaScript” to be able to follow the examples in this book. All
of the Vim features that are demonstrated for JavaScript can be adapted for
other languages.

If you want to execute the JavaScript examples in this book, you’ll need to
install the Node.js1 runtime, as well as the package manager npm.2 Check out
their websites for installation instructions.

Bash Shell (Or Any Shell)
Some of the tips in this book involve running commands in a shell. The
examples are written assuming that you use the bash shell, because this is
the default shell on many systems.

I don’t mean to suggest that you should be using bash. If you prefer to use zsh,
fish, or another shell, that’s cool. You’ve invested time customizing your shell,
so you should be prepared to spend a little bit more time adapting my
instructions to make them work for your setup. You shouldn’t have any
trouble with this, since we only use basic features of the shell.

Git
Throughout this book you’ll find instructions for running git commands, such
as clone, init, and commit. You’ll need an up-to-date installation of Git. You can
find instructions for installing Git online.3

1. https://nodejs.org
2. https://www.npmjs.com
3. https://git-scm.com/book/en/v2/Getting-Started-Installing-Git

• Click HERE to purchase this book now. discuss

Other Software Requirements • vii

https://nodejs.org
https://www.npmjs.com
https://git-scm.com/book/en/v2/Getting-Started-Installing-Git
http://pragprog.com/titles/modvim
http://forums.pragprog.com/forums/modvim

Ripgrep
The Ripgrep tool by Andrew Gallant4 makes a couple of appearances. Much
like grep, the primary purpose of Ripgrep is to search files for a pattern, and
you’ll see it used this way in Tip 13, Searching Files with Grep-Alikes, on page
?. Ripgrep also has a neat bonus feature: running ripgrep --files lists all the
files beneath the current working directory, minus those that are ignored by
your version control system. You’ll see this feature put to use in Tip 7, Finding
Files Using Fuzzy Path Matching, on page ?.

Depending on which platform you’re using, you may be able to install Ripgrep
using your package manager. If that doesn’t work, take a look at the release
page on GitHub.5 There, you’ll find pre-built binaries for Linux and Mac.

Don’t worry if you can’t get Ripgrep to work on your machine. It’s nice to
have, but you can get by fine without it.

Notation for Simulating Vim on the Page
Ctrl-s is a common convention for representing chordal key commands. It
means “While holding down the Ctrl key, press the s key.” But this convention
isn’t well suited to describing Vim’s modal command set. In Modern Vim, I
use a specific notation to illustrate Vim usage, which I outline here.

Playing Melodies
In Normal mode, commands are composed by typing one or more keystrokes
in sequence. These commands appear as follows:

MeaningNotation

Press x oncex

In sequence, press d , then wdw

In sequence, press d , a , then pdap

Most of these sequences involve two or three keystrokes, but some are longer.
Deciphering the meaning of Vim’s Normal mode command sequences can be
challenging, but you’ll get better at it with practice.

4. https://github.com/BurntSushi/ripgrep
5. https://github.com/BurntSushi/ripgrep/releases

Introduction • viii

• Click HERE to purchase this book now. discuss

https://github.com/BurntSushi/ripgrep
https://github.com/BurntSushi/ripgrep/releases
http://pragprog.com/titles/modvim
http://forums.pragprog.com/forums/modvim

Playing Chords
When you see a keystroke such as <C-p> , it doesn’t mean “Press < , then C ,
then - , and so on.” The <C-p> notation is equivalent to Ctrl-p , which means
“While holding down the Ctrl key, press the p key.”

I didn’t choose this notation without good reason. Vim’s documentation uses
it (:help key-notation), and we can also use it in defining custom key mappings.
Some of Vim’s commands are formed by combining chords and keystrokes
in sequence, and this notation handles them well. Consider these examples:

MeaningNotation

While holding Ctrl press n<C-n>

Press g , then while holding Ctrl press]g<C-]>

While holding Ctrl press r , then release Ctrl and press 0<C-r>0

While holding Ctrl press w then =<C-w><C-=>

Placeholders
Many of Vim’s commands require two or more keystrokes to be entered in
sequence. Some commands must be followed by a particular kind of keystroke,
while other commands can be followed by any key on the keyboard. I use
curly braces to denote the set of valid keystrokes that can follow a command.
Here are some examples:

MeaningNotation

Press f , followed by any other characterf{char}

Press ` , followed by any lowercase letter`{a-z}

Press m , followed by any lowercase or uppercase letterm{a-zA-Z}

Press d , followed by any motion commandd{motion}

While holding Ctrl press r , then release Ctrl and press the
address of a register

<C-r>{register}

While holding Ctrl press v , then release Ctrl and press any
nondigit key

<C-v>{nondigit}

• Click HERE to purchase this book now. discuss

Notation for Simulating Vim on the Page • ix

http://pragprog.com/titles/modvim
http://forums.pragprog.com/forums/modvim

Showing Special Keys
Some keys are called by name. This table shows a selection of them:

MeaningNotation

Press the Escape key<Esc>

Press the carriage return key (also known as <Enter>)<CR>

Press the Tab key<Tab>

While holding Shift press <Tab><S-Tab>

While holding Meta press j<M-j>

Press the up arrow key<Up>

Press the down arrow key<Down>

Press the space bar<Space>

In sequence, press <Leader> then g<Leader>g

Note that the Meta key goes by other names such as Alt and Option .

The Leader Key
The <Leader> key can be customized to suit your preference. The default
<Leader> key is \ , but lots of people prefer to set it to the , key. You can set
the leader key by putting this in your vimrc file:

let mapleader = ','

When you see the <Leader>g notation, you can translate the meaning to ,g ,
or \g , or whatever is appropriate for your configuration.

Interacting with the Command Line
In some tips you’ll execute a command line, either in a shell or from inside
Vim. For example, you might be instructed to change to a directory from the
provided source code examples, before opening a particular file. The $ prompt
in these examples indicates that the commands are to be run in an exter-
nal shell:

$ cd code/terminal/➾

$ nvim readme.md➾

Inside of Vim, pressing the : key switches from Normal mode to Command-
Line mode. In this mode, you can type out Ex commands such as :write and
:quit, using the <CR> key to execute the command. In the following examples,
the : prompt indicates that the commands are to be executed using Vim’s
Command-Line mode:

Introduction • x

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/modvim
http://forums.pragprog.com/forums/modvim

:s/cool/awesome/g➾

:write➾

Any time you see an Ex command listed inline, such as :write, assume that
the <CR> key is pressed to execute the command. Nothing happens otherwise,
so consider <CR> to be implicit.

In Neovim, you can run a shell inside of a terminal buffer using the :terminal
command. (This is covered in detail in Chapter 5, Neovim's Built-In Terminal
Emulator, on page ?.) In the following examples, the » prompt indicates that
the commands are to be executed in a shell within a terminal buffer:

» cat readme.md➾

» top➾

This table summarizes the meaning of these different prompts:

MeaningPrompt

Use Command-Line mode to execute an Ex command:

Enter the command line in an external shell$

Enter the command line in an internal shell (within a terminal buffer)»

Minimal Configuration
To follow the examples in this book, you’ll need to make sure that ‘nocompatible’
is set and that filetype detection is enabled. Prior to version 8 of Vim, you had
to specify these settings in your vimrc file:

set nocompatible
filetype plugin indent on

With the release of Vim 8, these are now default settings (:help defaults.vim).
That means you don’t have to include those lines in your vimrc, unless you
want to keep your configuration backward compatible with older versions of
Vim. You can check that filetype detection is enabled by running:

:filetype➾

filetype detection:ON plugin:ON indent:ON❮

Make sure that you can see detection:ON, otherwise you’ll have trouble following
some of the tips in this book.

Using Factory Settings
Some of the tips in Modern Vim are written on the assumption that you’re
running Vim with the “factory settings.” If you want to follow the steps in
these tips, you can do so by temporarily moving your Vim configuration to a

• Click HERE to purchase this book now. discuss

Minimal Configuration • xi

http://pragprog.com/titles/modvim
http://forums.pragprog.com/forums/modvim

location where it will be ignored when you start up your editor. For example,
you could rename your Vim 8 configuration files like this:

$ mv ~/.vim ~/.xvim➾

$ mv ~/.vimrc ~/.xvimrc➾

$ mkdir ~/.vim➾

After following the tip, you can restore your Vim configuration by moving the
files back to their original locations:

$ rm -r ~/.vim➾

$ mv ~/.xvim ~/.vim➾

$ mv ~/.xvimrc ~/.vimrc➾

For Neovim, you could switch to the factory settings by running:

$ mv ~/.config/nvim ~/.config/xnvim➾

$ mkdir ~/.config/nvim➾

Then you could switch back again by running:

$ rm -r ~/.config/nvim➾

$ mv ~/.config/xnvim ~/.config/nvim➾

Downloading the Examples
The examples in Modern Vim usually begin by showing the contents of a file
before we change it. These code listings will include a file path that will look
similar to the following:

green-bottles.txt
10 green bottles hanging on the wall.

Each time you see a file listed with its file path in this manner, it means you
can download the example. I recommend that you open the file in Vim and
try out the exercises for yourself. It’s the best way to learn!

To follow along, download the examples and source code6 from the Modern
Vim book page at The Pragmatic Bookshelf,7 which is where you will also find
a place to post any errata. If you’re reading on an electronic device that’s
connected to the Internet, you can also fetch each file one by one by clicking
the filename. Try it with the previous example.

Now, let’s get started!

6. https://pragprog.com/titles/modvim/source_code
7. https://pragprog.com/titles/modvim

Introduction • xii

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/modvim/code/green-bottles.txt
https://pragprog.com/titles/modvim/source_code
https://pragprog.com/titles/modvim
http://pragprog.com/titles/modvim
http://forums.pragprog.com/forums/modvim

