
Extracted from:

Programming Your Home
Automate with Arduino, Android, and Your Computer

This PDF file contains pages extracted from Programming Your Home, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Jackie Carter (editor)
Potomac Indexing, LLC (indexer)
Molly McBeath (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2012 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-93435-690-6
Printed on acid-free paper.
Book version: P1.0—February 2012

http://pragprog.com

4.3 Dog Assembly

Take a look at the schematic in Figure 8, Wiring diagram for the Electric Guard
Dog, on page 6. The graphic shows wiring plugging into the wave shield. The
wave shield is stacked on top of the Arduino board. Note that the wave shield
uses several of the pins for its own use to interact with the Arduino, which
is why not all passthrough pins are available for the sketch. Closely follow
the wiring diagram and you should not have a problem.

Attach the positive lead of the PIR to the 3.3v pin on the wave shield. Connect
the negative lead to one of the wave shield’s available ground pins. Then attach
the control wire (the middle pin/wire on the PIR) to the wave shield’s digital
pin 12.

Next, attach the servo’s positive wire to the wave shield’s 5v pin. Connect the
negative lead to the wave shield’s other available ground pin. Finally, connect
the control wire to the wave shield’s digital pin 11.

For brief testing purposes, you can attach male pins to the wires and plug
them directly into the sockets on the wave shield. More reliable connections
can be achieved by using either male or female header pins instead. These
can be obtained directly from various Arduino board suppliers. If you plan
on using the wave shield exclusively for this project, you can solder the wiring
permanently to the shield for the most stable electrical connection possible.

There is one more step we should take before writing the sketch. We need to
either record and digitize a dog growling and barking in various ways or
legally download audio samples from the Internet of snarling, barking dog
sounds.

The first option takes more time and requires access to a big dog that can
bark, snarl, and growl on command—with a microphone near its toothy
yapper, no less! While this requires a bit more extra work, the results produce
a more consistent and realistic effect. And because you know the source,
playback generates a more meaningful audio cue.

The second option of searching on the Internet for a variety of angry dog audio
samples is more convenient but rarely produces a consistent and believable
overall effect. This is especially true when the samples are acquired from a
variety of dog breeds. How can a dog have the toothy snarl of a Doberman
one minute and the yapping of a miniature poodle the next? Also, downloading
audio samples from the Internet has copyright implications that have to be

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mrhome
http://forums.pragprog.com/forums/mrhome

Figure 8—Wiring diagram for the Electric Guard Dog

Joe asks:

How Does a PIR Sensor Work?
A PIR detects motion by comparing two samples of infrared radiation being emitted
by a body warmer than the background environment it is moving against. When either
side of the sensor detects a greater value than the other, it sends a signal to the digital
out pin that motion has been detected. The IR sensor at the heart of a PIR is typically
covered by a dome-shaped lens that helps to condense and focus light so that it is
much easier for the sensor to detect infrared variations, and thus, motion.

For a more detailed explanation of the theory behind PIRs, visit Ladyada’s informative
web page on the subject.a

a. http://www.ladyada.net/learn/sensors/pir.html

respected. One website that I recommend visiting is the Freesound Project,7

which features a number of samples available under the Creative Commons

6 •

• Click HERE to purchase this book now. discuss

http://www.ladyada.net/learn/sensors/pir.html
http://pragprog.com/titles/mrhome
http://forums.pragprog.com/forums/mrhome

Sampling Plus license.

After you have obtained five audio clips using either approach, you need to
convert them to a format the wave shield can interpret. Based on the conver-
sion instructions on Ladyada’s website,8 samples must not exceed a 22KHz
16-bit mono PCM (WAV) format. You want the highest audio quality possible,
and there should be plenty of space on the SD card to store them. The audio
clips you select for the project should not exceed five seconds in duration so
they appear more synchronized with the servo motion when the audio is
played back.

You can use an audio editor like Audacity to import and convert and save
your audio clips to the correct format.9 Make sure they are compatible by
copying the converted files to the wave shield’s SD card and running the
dap_hc.pde sketch posted on Ladyada’s website.10 Note that we’re going to make
one change to Ladyada’s wave shield demo sketch. Instead of the newer
wavehc library it uses, we are going to use the older AF_Wave library. That way,
we can use Arduino community forum member avandalen’s MediaPlayer
library11—it makes working with wave shield sound files far easier. We will
take a closer look at this library and another Arduino community contributor’s
library for servos when we write the sketch in the next section.

4.4 Dog Training

The sketch we write will monitor the PIR for any motion events. If movement
is detected, the shield will randomly play one of five different audio files stored
on the wave shield’s SD card. Simultaneously, the servo motor rotates up to
150 degrees, depending on the sound effect being played back. Attach a
wooden rod to the servo gear and the servo’s rotation will move the rod up
and down. When the rod is positioned behind a curtain, it will give the illusion
of a dog’s snout attempting to nudge the curtain aside so it can see who’s at
the door or window.

To begin, we need to include the MediaPlayer.h header file along with its two
dependencies, pgmspace.h (part of a memory management library included in
the Arduino’s standard installation) and util.h (part of the original wave shield’s
AF_Wave library). Because the MediaPlayer class relies on the AF_Wave library,

7. http://www.freesound.org
8. http://www.ladyada.net/make/waveshield/convert.html
9. http://audacity.sourceforge.net/
10. http://www.ladyada.net/make/waveshield/libraryhc.html
11. http://www.arduino.cc/playground/Main/Mediaplayer

• Click HERE to purchase this book now. discuss

Dog Training • 7

http://www.freesound.org
http://www.ladyada.net/make/waveshield/convert.html
http://audacity.sourceforge.net/
http://www.ladyada.net/make/waveshield/libraryhc.html
http://www.arduino.cc/playground/Main/Mediaplayer
http://pragprog.com/titles/mrhome
http://forums.pragprog.com/forums/mrhome

make sure you have already downloaded, unzipped, and copied the uncom-
pressed AF_Wave folder into the Arduino’s libraries folder.12

Next, create a new sketch in the Arduino IDE called ElectricGuardDog. Download
the MediaPlayer library from the Arduino playground website;13 extract the
zip archive; and place the unzipped MediaPlayer.h, MediaPlayer.pde, and MediaPlay-
erTestFunctions.pde files into the ElectricGuardDog folder created by the Arduino IDE
when it created the ElectricGuardDog.pde file. If you downloaded the project files
for the book, the Mediaplayer library file dependencies have already been pre-
bundled for you. The Mediaplayer library allows us to control audio file playback
very easily.

We will also need to call upon another custom library to operate the servo
motor. If you try to compile the sketch using the standard Arduino Servo class,
the program will fail with this error:

Servo/Servo.cpp.o: In function `__vector_11':
/Applications/Arduino.app/Contents/Resources/Java/libraries/Servo/Servo.cpp:103:
multiple definition of `__vector_11'

AF_Wave/wave.cpp.o:/Applications/Arduino.app/
Contents/Resources/Java/libraries/AF_Wave/wave.cpp:33: first defined here

What’s going on here? The AF_Wave library is taking over the vector interrupt
as the standard Servo library. Fortunately for us, Arduino community contrib-
utor Michael Margolis has written a library that gives the Arduino the ability
to control up to eight servo motors simultaneously. By doing so, his library
also circumvents the duplicate resource problem exhibited by the original
Servo library when combined with a wave shield.

Download the ServoTimer2 library,14 unzip it, and copy the ServoTimer2 folder
into the Arduino libraries folder. Keep in mind that each time you add a new
library to the Arduino libraries folder, you need to restart the Arduino IDE so
the Arduino’s avr-gcc compiler will recognize it.

After the wave shield’s AF_Wave and servo motor’s ServoTimer2 library dependen-
cies have been satisfied, add these references to the beginning of the sketch:

Download ElectricGuardDog/ElectricGuardDog.pde
#include <avr/pgmspace.h>
#include "util.h"
#include "MediaPlayer.h"
#include <ServoTimer2.h>

12. http://www.ladyada.net/media/wavshield/AFWave_18-02-09.zip
13. http://www.arduino.cc/playground/Main/Mediaplayer
14. http://www.arduino.cc/playground/uploads/Main/ServoTimer2.zip

8 •

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/mrhome/code/ElectricGuardDog/ElectricGuardDog.pde
http://www.ladyada.net/media/wavshield/AFWave_18-02-09.zip
http://www.arduino.cc/playground/Main/Mediaplayer
http://www.arduino.cc/playground/uploads/Main/ServoTimer2.zip
http://pragprog.com/titles/mrhome
http://forums.pragprog.com/forums/mrhome

Create several variables to store Arduino pin assignments and sensor/actuator
starting values.

Download ElectricGuardDog/ElectricGuardDog.pde
int ledPin = 13; // on board LED
int inputPin = 12; // input pin for the PIR sensor
int pirStatus = LOW; // set to LOW (no motion detected)
int pirValue = 0; // variable for reading inputPin status
int servoposition = 0; // starting position of the servo

Next, create two objects constructed from the MediaPlayer and ServoTimer2
libraries to more easily manipulate the servo motor and audio playback.

Download ElectricGuardDog/ElectricGuardDog.pde
ServoTimer2 theservo; // create servo object from the ServoTimer2 class
MediaPlayer mediaPlayer; // create mediaplayer object

// from the MediaPlayer class

Assign the variables we created to the Arduino pinModes in the sketch’s setup()
routine. Establish a connection to the Arduino IDE serial window to help
monitor the motion detection and audio playback events. Call the Arduino’s
randomSeed() function to seed the Arduino’s random number generator. By
polling the value of the Arduino’s analog pin 0, we can generate a better
pseudorandom number based on the electrical noise on that pin.

Download ElectricGuardDog/ElectricGuardDog.pde
void setup() {

pinMode(ledPin, OUTPUT); // set pinMode of the onboard LED to OUTPUT
pinMode(inputPin, INPUT); // set PIR inputPin and listen to it as INPUT
theservo.attach(7); // attach servo motor digital output to pin 7
randomSeed(analogRead(0)); // seed the Arduino random number generator
Serial.begin(9600);

}

With the library, variable, object, and setup initialization out of the way, we
can now write the main loop of the sketch. Essentially, we need to poll the
PIR every second for any state changes. If the PIR detects motion, it will send
a HIGH signal on pin 12. When this condition is met, we power the onboard
LED and send a motion detection message to the Arduino IDE’s serial window.

Next, we generate a random number between 1 and 5 based on the seed we
created earlier. Based on the value generated, we then play back the designat-
ed audio event and move the servo motor a predefined amount of rotation.
After that, we wait a second before returning the servo to its starting position
and run the loop again. If the PIR fails to detect motion (that is, if the signal
on pin 12 is LOW), we turn off the onboard LED, send a No motion message to
the serial window, stop the audio playback, and set the pirStatus flag to LOW.

• Click HERE to purchase this book now. discuss

Dog Training • 9

http://media.pragprog.com/titles/mrhome/code/ElectricGuardDog/ElectricGuardDog.pde
http://media.pragprog.com/titles/mrhome/code/ElectricGuardDog/ElectricGuardDog.pde
http://media.pragprog.com/titles/mrhome/code/ElectricGuardDog/ElectricGuardDog.pde
http://pragprog.com/titles/mrhome
http://forums.pragprog.com/forums/mrhome

Download ElectricGuardDog/ElectricGuardDog.pde
void loop(){
pirValue = digitalRead(inputPin); // poll the value of the PIR
if (pirValue == HIGH) { // If motion is detected

digitalWrite(ledPin, HIGH); // turn the onboard LED on
if (pirStatus == LOW) { // Trigger motion

Serial.println("Motion detected");

// Generate a random number between 1 and 5 to match file names
// and play back the file and move the servo varying degrees

switch (random(1,6)) {
case 1:

Serial.println("Playing back 1.WAV");
theservo.write(1250);
mediaPlayer.play("1.WAV");
break;

case 2:
Serial.println("Playing back 2.WAV");
theservo.write(1400);
mediaPlayer.play("2.WAV");
break;

case 3:
Serial.println("Playing back 3.WAV");
theservo.write(1600);
mediaPlayer.play("3.WAV");
break;

case 4:
Serial.println("Playing back 4.WAV");
theservo.write(1850);
mediaPlayer.play("4.WAV");
break;

case 5:
Serial.println("Playing back 5.WAV");
theservo.write(2100);
mediaPlayer.play("5.WAV");
break;

}

delay(1000); // wait a second
theservo.write(1000); // return the servo to the start position
pirStatus = HIGH; // set the pirStatus flag to HIGH to stop

// repeating motion
}

} else {
digitalWrite(ledPin, LOW); // turn the onboard LED off
if (pirStatus == HIGH){

Serial.println("No motion");
mediaPlayer.stop();
pirStatus = LOW; // set the pirStatus flag to LOW to

// prepare it for a motion event

10 •

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/mrhome/code/ElectricGuardDog/ElectricGuardDog.pde
http://pragprog.com/titles/mrhome
http://forums.pragprog.com/forums/mrhome

}
}

}

Save the code as ElectricGuardDog.pde and open up the newly created ElectricGuardDog
folder containing the ElectricGuardDog.pde source file. Place the unzipped MediaPlayer
files into the ElectricGuardDog directory. Double-check that the uncompressed
ServoTimer2 library files are in the Arduino libraries directory.

Reopen the Arduino IDE, load up the ElectricGuardDog.pde file, and click the
Verify icon in the Arduino IDE toolbar. If everything compiled without errors,
you have entered the code correctly and placed the dependent library files in
the correct locations. If not, review the error messages to see what dependen-
cies may be missing and correct accordingly.

With the sketch compiled successfully, we’re ready to test and tweak the code.

• Click HERE to purchase this book now. discuss

Dog Training • 11

http://pragprog.com/titles/mrhome
http://forums.pragprog.com/forums/mrhome

