Extracted from:

Programming Your Home
Automate with Arduino, Android, and Your Computer

This PDF file contains pages extracted from Programming Your Home, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or
PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the
content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

http://www.pragprog.com

Th
Pr ematic
ograminers

Programming
our Home

Automate with Arduino,
Android, and Your Computer

Mike Riley

Edited by Jacquelyn Carter

.

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Jackie Carter (editor)

Potomac Indexing, LLC (indexer)
Molly McBeath (copyeditor)
David J Kelly (typesetter)

Janet Furlow (producer)

Juliet Benda (rights)

Ellie Callahan (support)

Copyright © 2012 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-13: 978-1-93435-690-6

Printed on acid-free paper.

Book version: P1.0—February 2012

http://pragprog.com

7.4

Writing the Code for the Web Client

For the Web-enabled light switch, we will create a simple Ruby on Rails project
to manage the user interface interaction first via a web browser. We won’t
spend a lot of time on the user interface, though, since that will ultimately
be the job of the custom Android application we will create after the web in-
terface is functionally tested.

Rails runs optimally on Mac or Linux computers, and it is already installed
by default on Mac OS X 10.6. However, it is not the latest version. Because
this project requires Rails 3.0 or higher, the instructions are not applicable
to older versions of the framework. Follow the instructions on the Ruby on
Rails website to get the latest Rails release running on your computer.

With the Rails web framework installed, create a new directory and switch to
that directory before creating the new Rails project:

> mkdir ~/projects/ruby/rails/homeprojects/
> cd ~/projects/ruby/rails/homeprojects
> rails new x10switch

create

create README

create Rakefile

create config.ru

create .gitignore

create Gemfile

create app

create app/controllers/application controller.rb
create app/helpers/application_helper.rb
create app/mailers

create app/models

create vendor/plugins
create vendor/plugins/.gitkeep

Next, change into the new x10switch directory and create a new controller called
command with an action called cmd() to manage the interaction between the
web interface and the Heyu terminal application.

> cd x10switch
> rails generate controller Command cmd

create app/controllers/command controller.rb
route get "command/cmd"

invoke erb

create app/views/command

Ccreate app/views/command/cmd.html.erb

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mrhome
http://forums.pragprog.com/forums/mrhome

invoke test_unit

create test/functional/command controller test.rb
invoke helper

create app/helpers/command helper.rb

invoke test unit

create test/unit/helpers/command helper test.rb

Then, locate the app/controllersicommand_controller.rb file and check for the on and
off parameters and execute the appropriate action:
class CommandController < ApplicationController

def cmd
@result = params[:cmd]

if @result == "on"
%x[/usr/local/bin/heyu on h3]

end

if @result == "off"
%x[/usr/local/bin/heyu off h3]

end

end
end

The %x is a Ruby construct to execute an application with command-line
arguments. Hence, %x[/usr/local/bin/heyu on h3] tells Heyu to send an on command
code to the H3 house code X10 switch. Likewise, the %x[/usr/local/bin/heyu off h3]
tells that same switch to turn off.

Next, edit the app/views/command/cmd.html.erb document and replace its placeholder
contents with the following single line of embedded Ruby code to display the
results of the On and Off request:

The light should now be <%= @result %>.

While we could go much further with this Rails application, dressing it up
with a nice user-friendly interface accessed from the public/index.html file as well
as providing more verbose output of the result of the action, I will leave that
exercise for the aspiring reader. Since we will ultimately be controlling the
switch from a native mobile client application, there’s little incentive to invest
time in whipping up a sparkly web UI when it will hardly ever be seen.

Finally, edit the config/routes.rb file and replace the get "command/cmd" with the
following:

match "/command/:cmd", :to => 'command#cmd'

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mrhome
http://forums.pragprog.com/forums/mrhome

7.5

Testing Out the Web Client ® 7

This instructs the Rails application on how to route incoming command
requests to execute the on/off actions. Save your work and get ready to
rumble!

If you're setting up a newer version of Rails (such as Rails 3.1) on a Linux
system, you may also need to install a few package dependencies (or gems
as they’re known in Ruby parlance) in order for Rails to run. Just edit the
Gemfile file that was generated in the x10switch directory and add the following:

gem 'execjs'
gem 'therubyracer'

Save the changes and then run this command:

> bundle install

This will download and install the extra files used by the Rails 3.1 JavaScript
processing engine. With these two gems successfully installed, you're ready
to run and test out the X10switch Rails application.

Testing Out the Web Client

With the X10 computer interface working and plugged into the serial port of
the computer, fire up a development server of the Rails 3 code via this:

> cd ~/projects/ruby/rails/homprojects/x10switch
> rails s

=> Booting WEBrick

=> Rails 3.0.5 application starting in development on http://0.0.0.0:3000
=> Call with -d to detach

=> Ctrl-C to shutdown server

[2011-03-18 16:49:31] INFO WEBrick 1.3.1

[2011-03-18 16:49:31] INFO ruby 1.8.7 (2009-06-12) [universal-darwinl@.0]
[2011-03-18 16:49:31] INFO WEBrick::HTTPServer#start: pid=10313 port=3000

Open a web browser on the local machine and enter the following:

http://localhost:3000/command/on

If everything is coded correctly, you should see The light should now be on. in the
browser window, as shown in Figure 25, The browser should indicate the

More importantly, Heyu should have executed the on command for the X10
device coded with the H3 house code. In other words, the light should have
turned on. Turn the light off by submitting the off command:

http: //localhost:3000/command /off

« Click HERE to purchase this book now. discuss

http://localhost:3000/command/on
http://localhost:3000/command/off
http://pragprog.com/titles/mrhome
http://forums.pragprog.com/forums/mrhome

7.6

8e

ano X10switch
[4 | >] [ﬂ@ http://localhost:3000/command/on G] CQ' Google)
SRR~
The light should now be on.

Figure 25—The browser should indicate the proper status of the light.

If the light turned off, congratulations! You have wired up and programmed
everything correctly. When you're ready to expand the Rails application to
handle even more commands, just add more if @result == statements to the
CommandController class containing the command you want Heyu to transmit.
These commands could range from dimming lights to 30 percent, turning an
appliance on for a specified duration, or managing a combination of power
on/off events.

If you're interested in learning more about programming web applications
using the Ruby on Rails framework, check out Programming Ruby: The
Pragmatic Programmer’s Guide [TFHO09].

Now that the web application server is working, it’s time to build a mobile
client.

Writing the Code for the Android Client

You might be wondering why you should go through the trouble of building
a native Android client when the web application we wrote can be accessed
by the Android mobile web browser. Well, if all you wanted to do was toggle
light switches on and off, then I would say you don’t need a native client. The
web interface works just fine and can be further enhanced using AJAX and
slick HTML5/CSS3 user interface effects. But if you want to give a little more
intelligence to the app, such as activating power switches based on your
proximity to them or running an Android service that monitors inbound X10
events like motion detection and then sounds an alert on your phone to bring
such events to your attention, a dynamic web page just won’t do.

If you haven't already done so, download, install, and configure the Eclipse
IDE, the latest Android SDK, and the ADK plug-in for Eclipse. Visit the Android
SDK website for details on how to do so."

12. http://developer.android.com/sdk

« Click HERE to purchase this book now. discuss

http://developer.android.com/sdk
http://pragprog.com/titles/mrhome
http://forums.pragprog.com/forums/mrhome

Writing the Code for the Android Client ® 9

You will also need to create an Android Virtual Device (AVD) so that you can
use it to test the client application in an Android emulator before sending the
program to your Android device.'® I suggest creating an AVD that targets
Android 1.5 (API Level 3) so that it emulates the largest number of Android
phones available.

Launch the Eclipse environment and select File—-New—Android Project.
Depending on the version of Eclipse you are running, this option might also
be found on the File menu via New->Other->Android->Android Project. Call
the project LightSwitch and select Build Target as Android 1.5. You can choose
a higher Android version depending on what level of Android device you want
to deploy the application to, but since the LightSwitch program will be sweet
and simple, Android 1.5 should be adequate for this sample application.

In the Properties area, fill in the Application name as Light Switch and the
Package name as com.mysampleapp.lightswitch, and check the Create Activity
checkbox and enter LightSwitch. You can specify the Min SDK Version if you
wish, but since we're developing for one of the more popular lowest-common-
denominator versions of Android, we’ll leave it blank for now. Before you
continue, check to see if your New Android Project dialog box looks like the

one shown in Figure 26, Creating a new Android Project dialog box with com-

Android developers with good testing practices would then click the Next
button in the New Android Project dialog box to set up a Test Project resource.
However, in the interest of space and time, we’ll go ahead and click the Finish
button.

Once the Android Development Tools Eclipse plug-in generates the skeleton
Light Switch application code, double-click the main.xml in the res/layout folder
to open it into Android’s simple form editor. Drag a ToggleButton control from
the Form Widgets palette onto the main.xml graphical layout. Don’t worry
about perfectly aligning the control in the right spot for now. For this exercise,
we're more interested in function over form.

Because this application won’t require anything beyond the basic features
found in the earlier Android operating system releases, change the Android
version in the upper right corner drop-down box of the form editor to Android
1.5. Also, feel free to delete the default Hello world TextView element from the
layout. When done, the layout should look similar to the screen shown in

13. http://developer.android.com/guide/developing/devices/managing-avds.html

« Click HERE to purchase this book now. discuss

http://developer.android.com/guide/developing/devices/managing-avds.html
http://pragprog.com/titles/mrhome
http://forums.pragprog.com/forums/mrhome

800 New Android Project

New Android Project
Creates a new Android Project resource.

Project name: Lightswitch

Contents

e Create new project in workspace
(O Create project from existing source

™ Use default location

/Users/mike_riley/Projects/java/Lightswitch

Location: " Browse...)
() Create project from existing sample
p ApiDemos v
Build Target
Target Name Vendor Platform API L
™ Android 1.5 Android Open Source Project 1.5 3
() Android 1.6 Android Open Source Project 1.6 4
(O) Android 2.1-updatel Android Open Source Project 2.1-updatel 7
() Android 2.2 Android Open Source Project 2.2 8
() Google APIs Google Inc. 2.2 8
[== N) <>
Standard Android platform 1.5
Properties
Application name: | Light Switch
Package name: com.mysampleapp.lightswitch
] Create Activity: | LightSwitcH |
Min SDK Version:
® (<Back) (Next>) (_ cancel) (€ Finish-)
4

Figure 26—Creating a new Android Project dialog box with completed parameters

Figure 27, The graphical form layout of the Light Switch application, on page

Expand the src—com.mysampleapp.lightswitch tree and double-click the
LightSwitch.java file. Because we will be using the ToggleSwitch widget, the

first thing we need to import is the android.widget.ToggleButton class.

Next, add the java.net.URL and java.io.InputStream libraries, since we’ll be creating
URL objects to pass to Java InputStream object. The import statement section
of the LightSwitch.java file should now look like this:

package com.mysampleapp.lightswitch;
import android.app.Activity;

import android.os.Bundle;

import android.widget.ToggleButton;
import android.view.View;

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mrhome
http://forums.pragprog.com/forums/mrhome

Writing the Code for the Android Client ® 11

')
v

Editing config: default Any locale _t No Dock _. Day time Create...
[2.7in QVGA %) [Portrait + ||[Theme %/ Android 1.5 %]
Z| Palette = @

L= TR O R

.= Form Widgets

Ab TextView

= Button
CheckBox

_™ ToggleButton
RadicButtan

_+| Spinner

&4 EditText

“o AutoCompleteTex

“ MultiAutoComple:

w_=) ProgressBar

] Layouts

() Composite

[Images & Media
] Time & Date

[C7) Transitions

[Advanced

[Z] Graphical Layout | [=] main.xml

Figure 27—The graphical form layout of the Light Switch application

import java.net.URL;
import java.io.InputStream;

Now we have to make the LightSwitch aware of the ToggleSwitch by finding
it by ID in the LightSwitch class’s OnCreate event and adding an event listener
to monitor when the switch is toggled on and off:

public class LightSwitch extends Activity {
/** Called when the activity is first created. */
@Override
public void onCreate(Bundle savedInstanceState) {
super.onCreate(savedInstanceState);
setContentView(R.layout.main);
final String my server ip address and port number =
"192.168.1.100:3344";
final ToggleButton toggleButton =
(ToggleButton) findViewById(R.id.toggleButtonl);
toggleButton.setOnClickListener(new View.OnClickListener()
{
public void onClick(View v) {
if (toggleButton.isChecked()) {
try {
final InputStream is = new URL("http://"+

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mrhome
http://forums.pragprog.com/forums/mrhome

12¢

my server_ip address and port _number +"/command/on").openStream();

}

catch (Exception e) {

}
} else {

try {
final InputStream is = new URL("http://"+
my server ip address and port number +"/command/off").openStream();

}

catch (Exception e) {

Be sure to set the my_server_ip_address_and_port_number string in the example above
to the IP address and port that you plan to use to run the Rails application
server we wrote in Section 7.4, Writing the Code for the Web Client, on page

5. And that's it! Go ahead and run the application in the Android emulator
to make sure it compiles and shows up on the screen correctly.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mrhome
http://forums.pragprog.com/forums/mrhome

