
Extracted from:

Arduino: A Quick-Start Guide,
Second Edition

This PDF file contains pages extracted from Arduino: A Quick-Start Guide, Second
Edition, published by the Pragmatic Bookshelf. For more information or to purchase

a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Arduino: A Quick-Start Guide,
Second Edition

Maik Schmidt

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

All circuit diagrams were created with Fritzing (http://fritzing.org).

The team that produced this book includes:

Susannah Davidson Pfalzer (editor)
Potomac Indexing, LLC (indexer)
Cathleen Small (copyeditor)
Dave Thomas (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-94122-224-9
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2015

https://pragprog.com
http://fritzing.org
rights@pragprog.com

One of the most entertaining electronic activities is simply tinkering: taking
an existing product and turning it into something different or using it for an
unintended purpose. Sometimes you have to open the product and void its
warranty; other times you can safely make it part of your own project.

In this chapter, you’ll learn how to hijack a Nintendo Nunchuk controller. It’s
a perfect candidate for tinkering: it comes with a three-axis accelerometer,
an analog joystick, and two buttons, and it is very cheap (less than $20 at
the time of this writing). Even better: because of its good design and its easy-
to-access connectors, you can easily integrate it into your own projects.

You’ll use an ordinary Nunchuk controller and transfer the data it emits to
our computer using an Arduino. You’ll learn how to wire it to the Arduino,
how to write software that reads the controller’s current state, and how to
build your own video game console. You don’t even need a Nintendo Wii to
do all of this—you need only a Nunchuk controller (shown in Figure 26, A
Nintendo Nunchuk controller, on page 6).

What You Need
• An Arduino board, such as the Uno, Duemilanove, or Diecimila
• A USB cable to connect the Arduino to your computer
• A Nintendo Nunchuk controller
• Four wires
• The modified RCA cable you built in Chapter 8, Generating Video Signals

with an Arduino, on page ?

Wiring a Wii Nunchuk
Wiring a Nunchuk to an Arduino really is a piece of cake. You don’t have to
open the Nunchuk or modify it in any way. You only have to put four wires
into its connector and then connect the wires to the Arduino:

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/msard2
http://forums.pragprog.com/forums/msard2

Figure 26—A Nintendo Nunchuk controller

GND

3.3V Data

Clock
It has six connectors, but only four of them are active:
GND, 3.3V, Data, and Clock. Here’s the pinout of a
Nunchuk plug:

Put a wire into each connector and then connect the
wires to the Arduino. Connect the data wire to analog pin 4 and the clock
wire to analog pin 5. The GND wire has to be connected to the Arduino’s
ground pin, and the 3.3V wire belongs to the Arduino’s 3.3V pin.

That’s really all you have to do to connect a Nunchuk controller to an Arduino.
In the next section, you’ll see that the two wires connected to analog pins 4
and 5 are all we need to interface with the controller.

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/msard2
http://forums.pragprog.com/forums/msard2

Talking to a Nunchuk
No official documentation shows how a Nunchuk works internally or how you
can use it in a non-Wii environment. But some smart hackers and makers
on the Internet invested a lot of time into reverse-engineering what’s happening
inside the controller.

All in all, it’s really simple, because the Nunchuk uses the Two-Wire Interface
(TWI), also known as I2C (Inter-Integrated Circuit) protocol.1 It enables devices
to communicate via a master/slave data bus using only two wires. You
transmit data on one wire (Data), while the other synchronizes the communi-
cation (Clock).

The Arduino IDE comes with a library named Wire that implements the I2C
protocol. It expects the data line to be connected to analog pin 4 and the clock
line to analog pin 5. We’ll use it shortly to communicate with the Nunchuk,
but before that, we’ll have a look at the commands the controller understands.2

To be honest, the Nunchuk understands only a single command: “Give me
all your data.” Whenever it receives this command, it returns 6 bytes that
have the following meanings:

7 6 5 4 3 2 1 0

Joystick x position

Joystick y position

X acceleration bits 9..2

Y acceleration bits 9..2

Z acceleration bits 9..2

Bit

Byte 1

Byte 2

Byte 3

Byte 4

Byte 5

Byte 6 Z accel.
bits 1..0

Y accel.
bits 1..0

X accel.
bits 1..0

Z
status

C
status

• Byte 1 contains the analog stick’s x-axis value, and in byte 2 you’ll find
the stick’s y-axis value. Both are 8-bit numbers and range from about 29
to 225.

1. http://en.wikipedia.org/wiki/I2c
2. At http://todbot.com/blog/2010/09/25/softi2cmaster-add-i2c-to-any-arduino-pins/, you can find a library

that allows you to use any pair of pins for I2C communication.

• Click HERE to purchase this book now. discuss

Talking to a Nunchuk • 7

http://en.wikipedia.org/wiki/I2c
http://todbot.com/blog/2010/09/25/softi2cmaster-add-i2c-to-any-arduino-pins/
http://pragprog.com/titles/msard2
http://forums.pragprog.com/forums/msard2

• Acceleration values for the x-, y-, and z-axes are three 10-bit numbers.
Bytes 3, 4, and 5 contain their eight most significant bits. You can find
the missing two bits for each of them in byte 6.

• Byte 6 has to be interpreted bit-wise. Bit 0 (the least significant bit) con-
tains the status of the Z-button. It’s 0 if the button was pressed; otherwise,
it is 1. Bit 1 contains the C-button’s status.

The remaining six bits contain the missing least significant bits of the accel-
eration values. Bits 2 and 3 belong to the x-axis, bits 4 and 5 belong to Y,
and bits 6 and 7 belong to Z.

Now that you know how to interpret the data you get from the Nunchuk, you
can start to build a Nunchuk class to control it.

Improve People’s Lives with Tinkering

Because of its popularity, peripheral equipment for modern game consoles often is
unbelievably cheap. Also, it’s no longer limited to classic controllers; you can buy
things such as snowboard simulators or cameras. So, it comes as no surprise that
creative people have built many interesting projects using hardware that was origi-
nally built for playing games.

An impressive and useful tinkering project is the EyeWriter.a It uses the PlayStation
Eye (a camera for Sony’s PlayStation 3) to track the movement of human eyes.

A team of hackers built it to enable their paralyzed friend to draw graffiti using his
eyes. Because of a disease, this friend, an artist, is almost completely physically
paralyzed and can move only his eyes. With the EyeWriter, he can create amazing
artwork again.

It’s not an Arduino project, but it’s definitely worth a look.

a. http://www.eyewriter.org/

Building a Nunchuk Class
The interface of our Nunchuk class (and the main part of its implementation)
looks as follows:

Tinkering/NunchukDemo/nunchuk.h
#ifndef __NUNCHUK_H__Line 1

#define __NUNCHUK_H__-

#define NUNCHUK_BUFFER_SIZE 6-

-

class Nunchuk {5

public:-

void initialize();-

• 8

• Click HERE to purchase this book now. discuss

http://www.eyewriter.org/
http://media.pragprog.com/titles/msard2/code/Tinkering/NunchukDemo/nunchuk.h
http://pragprog.com/titles/msard2
http://forums.pragprog.com/forums/msard2

bool update();-

-

int joystick_x() const { return _buffer[0]; }10

int joystick_y() const { return _buffer[1]; }-

-

int x_acceleration() const {-

return ((int)(_buffer[2]) << 2) | ((_buffer[5] >> 2) & 0x03);-

}15

-

int y_acceleration() const {-

return ((int)(_buffer[3]) << 2) | ((_buffer[5] >> 4) & 0x03);-

}-

20

int z_acceleration() const {-

return ((int)(_buffer[4]) << 2) | ((_buffer[5] >> 6) & 0x03);-

}-

bool z_button() const { return !(_buffer[5] & 0x01); }-

bool c_button() const { return !(_buffer[5] & 0x02); }25

-

private:-

void request_data();-

char decode_byte(const char);-

30

unsigned char _buffer[NUNCHUK_BUFFER_SIZE];-

};-

-

#endif-

This small C++ class is all you need to use a Nunchuk controller with your
Arduino. It starts with a double-include prevention mechanism: it checks
whether a preprocessor macro named __NUNCHUK_H__ has been defined already
using #ifndef. If it hasn’t been defined, we define it and continue with the
declaration of the Nunchuk class. Otherwise, the preprocessor skips the decla-
ration, so you can safely include this header file more than once in your
application.

In line 3, we create a constant for the size of the array we need to store the
data the Nunchuk returns. We define this array in line 31, and in this case,
we define the constant using the preprocessor instead of the const keyword,
because array constants must be known at compile time in C++.

Then the actual declaration of the Nunchuk class begins. To initiate the commu-
nication channel between the Arduino and the Nunchuk, you have to invoke
the initialize method once. Then you call update whenever you want the Nunchuk
to send new data. You’ll see the implementation of these two methods shortly.

We have public methods for getting all of the attributes the Nunchuk returns:
the x and y positions of the analog stick, the button states, and the accelera-

• Click HERE to purchase this book now. discuss

Building a Nunchuk Class • 9

http://pragprog.com/titles/msard2
http://forums.pragprog.com/forums/msard2

tion values of the x-, y-, and z-axes. All of these methods operate on the raw
data you can find in the buffer in line 31. Their implementation is mostly
trivial, and it requires only a single line of code. Only the assembly of the 10-
bit acceleration values needs some tricky bit operations (see Bit Operations,
on page ?).

At the end of the class declaration, you’ll find two private helper methods
named request_data and decode_byte. We need them to implement the initialize and
update methods:

Tinkering/NunchukDemo/nunchuk.cpp
#include <Arduino.h>Line 1

#include <Wire.h>-

#include "nunchuk.h"-

#define NUNCHUK_DEVICE_ID 0x52-

5

void Nunchuk::initialize() {-

Wire.begin();-

Wire.beginTransmission(NUNCHUK_DEVICE_ID);-

Wire.write((byte)0x40);-

Wire.write((byte)0x00);10

Wire.endTransmission();-

update();-

}-

-

bool Nunchuk::update() {15

delay(1);-

Wire.requestFrom(NUNCHUK_DEVICE_ID, NUNCHUK_BUFFER_SIZE);-

int byte_counter = 0;-

while (Wire.available() && byte_counter < NUNCHUK_BUFFER_SIZE)-

_buffer[byte_counter++] = decode_byte(Wire.read());20

request_data();-

return byte_counter == NUNCHUK_BUFFER_SIZE;-

}-

-

void Nunchuk::request_data() {25

Wire.beginTransmission(NUNCHUK_DEVICE_ID);-

Wire.write((byte)0x00);-

Wire.endTransmission();-

}-

30

char Nunchuk::decode_byte(const char b) {-

return (b ^ 0x17) + 0x17;-

}-

After including all of the libraries we need, we define the NUNCHUK_DEVICE_ID
constant. I2C is a master/slave protocol; in our case, the Arduino will be the
master, and the Nunchuk will be the slave. The Nunchuk registers itself at

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/msard2/code/Tinkering/NunchukDemo/nunchuk.cpp
http://pragprog.com/titles/msard2
http://forums.pragprog.com/forums/msard2

the data bus using a certain ID (0x52), so we can address it when we need
something.

In initialize, we establish the connection between the Arduino and the Nunchuk
by sending a handshake. In line 7, we call Wire’s begin method, so the Arduino
joins the I2C bus as a master. (If you pass begin an ID, it joins the bus as a
slave having this ID.) Then we’ll begin a new transmission to the device
identified by NUNCHUCK_DEVICE_ID: our Nunchuk.

We send two bytes (0x40 and 0x00) to the Nunchuk, and then we end the
transmission. This is the whole handshake procedure, and now we can ask
the Nunchuk for its current status by calling update. In the following figure,
we see the message flow between an Arduino and a Nunchuk.

Arduino Nunchuk

6 data bytes

Handshake (0x40, 0x00)

Request new data (0x00)

6 data bytes } repeat

update first pauses for a millisecond to let things settle. Then we request six
bytes from the Nunchuk, calling Wire.requestFrom. This doesn’t actually return
the bytes, but we have to read them in a loop and fill our buffer. Wire.available
returns the number of bytes available on the data bus, and Wire.read returns
the current byte. We cannot use the bytes we get from the Nunchuk directly,
because the controller obfuscates them. “Decrypting” them is easy, as you
can see in decode_byte.

Finally, we call request_data to tell the Nunchuk to prepare new data. It transmits
a single zero byte to the Nunchuk, which means “prepare the next six bytes.”

Before we actually use our Nunchuk class in the next section, take a look at the
documentation of the Wire library. In the Arduino IDE’s menu, choose Help
> Reference and click the Libraries link.

• Click HERE to purchase this book now. discuss

Building a Nunchuk Class • 11

http://pragprog.com/titles/msard2
http://forums.pragprog.com/forums/msard2

Scientific Applications Using Wii Equipment

Because of the Wii’s accuracy and low price, many scientists use the Wii for things
other than gaming. Some hydrologists use it for measuring evaporation from a body
of water.a Usually, you’d need equipment costing more than $500 to do that.

Some doctors at the University of Melbourne had a closer look at the Wii Balance
Board, because they were looking for a cheap device to help stroke victims recover.b

They published a scientific paper verifying that the board’s data is clinically compa-
rable to that of a lab-grade “force platform” for a fraction of the cost.

a. http://www.wired.com/wiredscience/2009/12/wiimote-science/
b. http://www.newscientist.com/article/mg20527435.300-wii-board-helps-physios-strike-a-balance-after-

strokes.html

• 12

• Click HERE to purchase this book now. discuss

http://www.wired.com/wiredscience/2009/12/wiimote-science/
http://www.newscientist.com/article/mg20527435.300-wii-board-helps-physios-strike-a-balance-after-strokes.html
http://www.newscientist.com/article/mg20527435.300-wii-board-helps-physios-strike-a-balance-after-strokes.html
http://pragprog.com/titles/msard2
http://forums.pragprog.com/forums/msard2

