
Extracted from:

Enterprise Recipes with Ruby and Rails

This PDF file contains pages extracted from Enterprise Recipes with Ruby and Rails,

published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2008 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Recipe 6

Store Passwords Securely

Problem

Believe me, even if you think you already know how to store passwords
securely, you probably don’t. There’s a lot of folklore code wandering
around the Internet, and most of it is wrong. In this recipe, you’ll learn
what the biggest threats to your passwords are and how to store them
the right way.

Ingredients

• Install the bcrypt-ruby18 gem (at the time of this writing, it is not
available for the Windows platform):

$ gem install bcrypt-ruby

Solution

Let’s say we have a User model that is represented in the database as
follows:

Download security/bcrypt_demo/db/migrate/20080803070736_create_users.rb

class CreateUsers < ActiveRecord::Migration
def self.up

create_table :users do |t|
t.string :name
t.string :hashed_password

t.timestamps
end

end

def self.down
drop_table :users

end

end

Admittedly, it’s rather simplistic, but it’s sufficient for demonstration
purposes: our users have a name and a password. At least most people
know that they should never store passwords as plaintext, so usually

18. http://bcrypt-ruby.rubyforge.org/

http://media.pragprog.com/titles/msenr/code/security/bcrypt_demo/db/migrate/20080803070736_create_users.rb
http://bcrypt-ruby.rubyforge.org/

6. STORE PASSWORDS SECURELY 45

passwords are run through a mathematical one-way function such as
MD5 or SHA1. These algorithms produce a hash value (also called a
fingerprint). In other words, the same input value always results in the
same output value, and you should not be able to deduce the input
value from the output value. Instead of storing the password itself, you
store only its hash value.

If a user tries to log in now, she sends her username and password
to the application as plaintext (over a secure network connection such
as HTTPS, of course). Then the server calculates the password’s hash
value and compares it to the hash value that has been stored in the
database. If they are equal, the password is correct. Otherwise, it’s not.

The biggest security threat is that someone gets a copy of all usernames
and their according password hashes, because in the worst case (that
is, if you did not store your passwords really securely) the attacker
could derive the original passwords from the hash values. If, for exam-
ple, you have hashed your passwords using MD5, this is easier than
you think, because of rainbow tables. Simply put, these tables contain
the MD5 hashes for all possible character sequences up to a certain
length. Breaking a password is basically reduced to a table lookup.

To protect yourself from rainbow table attacks, you can add a little bit
of random information, called salt, to every password before you turn
it into a hash value. This way, an attacker would need a new rainbow
table for every single password. But that’s still insufficient, because
with today’s computing power, it’s actually possible to perform this kind
of attack. Typical hash algorithms can be computed very quickly on a
modern computer, and they can be calculated even faster on special
devices that have become pretty cheap in the past few years.

Most of today’s password-cracking tools aren’t based on tables any-
more; instead, they use sophisticated algorithms based on cryptanaly-
sis and statistics. That is, if you want to make an attacker’s life more
difficult, you have to drastically increase the time needed to crack your
passwords. This can be achieved by hashing your passwords not only
once but several times and by adding a new random bit of salt for
every iteration. Several algorithms are available for doing this. One of
the most popular is bcrypt, which is used by OpenBSD for encrypting
passwords, for example.19

19. You can find an excellent article explaining all this in detail at
http://www.matasano.com/log/958/.

Report erratum

this copy is (P1.0 printing, November 2008)

http://www.matasano.com/log/958/
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=45

6. STORE PASSWORDS SECURELY 46

We use a bcrypt library for Ruby to add a secure password scheme to
our User model:

Download security/bcrypt_demo/app/models/user.rb

Line 1 require 'bcrypt'
-

- class User < ActiveRecord::Base
- def password
5 @password ||= BCrypt::Password.new(self.hashed_password)
- end
-

- def password=(new_password)
- @password = BCrypt::Password.create(new_password, :cost => 10)

10 self.hashed_password = @password
- end
-

- def self.authenticate(name, password)
- if user = self.find_by_name(name)

15 user = nil if user.password != password
- end
- user
- end
- end

We define a virtual password attribute. That is, we can read and write
it, but it is not stored in the database. Only the hashed password
gets stored. In line 5, we implement the reader. If the password has
been created already, we simply return it. Otherwise, we create a new
BCrypt::Password object from the hashed password and return this. The
Password class hides all the cryptographic details and provides some
convenience methods that we will use later.

Our writer’s implementation starts in line 9. Here we create a new Pass-

word object from a plaintext password that has been input by a user.
The cost attribute allows us to control the security level of the password.
The higher the cost value, the longer it takes to break the password. We
store the hashed password in @password and in self.hashed_password, so
it gets stored in the database, too. Note that we do not have to store a
salt value separately.

Finally, we need an authenticate() method that actually checks whether
a certain combination of username and password is valid. First we
check whether the user exists in the database, and if the user does, we
compare the password entered to the password that has been stored in
the database in line 15. Because the Password class overrides the ==()
operator, the code looks very elegant, doesn’t it? Be assured: behind the
scenes a lot of cryptography is performed.

Report erratum

this copy is (P1.0 printing, November 2008)

http://media.pragprog.com/titles/msenr/code/security/bcrypt_demo/app/models/user.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=46

6. STORE PASSWORDS SECURELY 47

Let’s use our new User class on the Rails console:

mschmidt> ruby script/console

Loading development environment (Rails 2.1.0)
>> user = User.create(:name => 'Maik', :password => 't0p$ecret')

=> #<User id: 2, name: "Maik",
hashed_password:

"$2a$10$fveY1Zte2p37XsQ0tTtsYeUGLWRgJtWPx8zXYcuFle0Z...",
created_at: "2008-06-30 13:22:14",
updated_at: "2008-06-30 13:22:14">

>> User.authenticate('Maik', 'wrong password')

=> nil
>> User.authenticate('Maik', 't0p$ecret')

=> #<User id: 2, name: "Maik",
hashed_password:

"$2a$10$fveY1Zte2p37XsQ0tTtsYeUGLWRgJtWPx8zXYcuFle0Z...",
created_at: "2008-06-30 13:22:14",
updated_at: "2008-06-30 13:22:14">

>>

We created a new user named Maik who has the password t0p$ecret.
As you can see, only a hashed version of the password has been stored.
Then, we tried to authenticate ourselves using a wrong password. As
expected, we’ve got nil as a result. Finally, we used the right password
and got a User object back.

Although it’s easy to use the bcrypt library directly, there is even a Rails
plug-in named acts_as_authentable20 for it.

Discussion

Whenever you are writing code related to security, you should be ex-
tremely cautious and skeptical. Always try to get the latest information
available about security holes in all the tools and algorithms you’re
going to use. That’s true for bcrypt, too.

At the moment, bcrypt is sufficient for most purposes, but it uses the
Blowfish encryption algorithm21 internally, which has been succeeded
already by Twofish.22 It’s a good idea to look for alternative solutions
as early as possible, and stronger hashing algorithms such as SHA-256
are interesting candidates.23

Your software can never be totally secure, but it should be as secure as
possible.

20. http://code.google.com/p/acts-as-authentable/

21. http://en.wikipedia.org/wiki/Blowfish_(cipher)

22. http://en.wikipedia.org/wiki/Twofish

23. http://csrc.nist.gov/groups/ST/toolkit/secure_hashing.html

Report erratum

this copy is (P1.0 printing, November 2008)

http://code.google.com/p/acts-as-authentable/
http://en.wikipedia.org/wiki/Blowfish_(cipher)
http://en.wikipedia.org/wiki/Twofish
http://csrc.nist.gov/groups/ST/toolkit/secure_hashing.html
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=47

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style, and continue to garner awards

and rave reviews. As development gets more and more difficult, the Pragmatic Program-

mers will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Enterprise Recipes with Ruby and Rail’s Home Page

http://pragprog.com//titles/msenr

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com//titles/msenr.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragprog.com/catalog

Customer Service: orders@pragprog.com
Non-English Versions: translations@pragprog.com
Pragmatic Teaching: academic@pragprog.com
Author Proposals: proposals@pragprog.com

http://pragprog.com//titles/msenr
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com//titles/msenr
www.pragprog.com/catalog

	Security & E-Commerce Recipes
	Store Passwords Securely

