Extracted from:

This PDF file contains pages extracted from Enterprise Recipes with Ruby and Rails,
published by the Pragmatic Bookshelf. For more information or to purchase a
paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is
available only in online versions of the books. The printed versions are black and white.
Pagination might vary between the online and printer versions; the content is otherwise

identical.
Copyright © 2008 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Connect to Message Queues
with ActiveMessaging

Problem
,_J L \

Most of your company’s infrastructure is based on asynchronous mes-
saging; in other words, vital components can be used only by exchang-
ing messages with them. One of them is a central order handler.

It’s your task to build a Rails application for placing orders by sending
messages to the company’s central order handler. Orders will be stored
in a local database, and the application will listen for order status mes-
sages emitted by the order handler. This way, the front end can provide
a nice and responsive user experience while it can still keep track of
the current status of the orders.

J Ingredients | \

¢ Perform all installation steps described in Recipe 37, Create a Mes-
saging Infrastructure, on page 233.

* From your Rails application’s root directory, install the ActiveMes-
saging'® plug-in:

mschmidt> script/plugin install \
> http://activemessaging.googlecode.com/svn/trunk/plugins/\
> activemessaging

Solution
,_J L \

This scenario is pretty common: a time-consuming task is handed to a
back-end service that sends back a result asynchronously when it has
finished the task (see a simplified view of our architecture in Figure 8.3,
on page 250).

In Recipe 37, Create a Messaging Infrastructure, on page 233, you can
see how to integrate ordinary Ruby code with message-oriented middle-
ware. This time Rails gets added to the game, and it does not support

15. http://code.google.com/p/activemessaging/

http://code.google.com/p/activemessaging/

39. CONNECT TO MESSAGE QUEUES WITH ACTIVEMESSAGING

access to messaging architectures natively. But ActiveMessaging is a
plug-in that makes messaging with Rails a piece of cake.

Before we send and receive messages, we’ll build a model for orders in
the database:

Download messaging/activemessaging/msgdemo/db/migrate/001_create_orders.rb

create_table :orders do |t]

t.column :customer, :string
t.column :product, :string
t.column :quantity, :int
t.column :status, :string, :default => 'OPEN'
t.timestamps
end

Admittedly, this is a rather lightweight order model, but for our pur-
poses it’s sufficient. It stores the customer’s name, the order’s status,
and the name and quantity of the product that has been ordered (for
an order entry form, see Figure 8.4, on page 251). We could already
implement a controller for manipulating it, but our controller does not
need to store only orders; it also has to send them to a message queue.
We have to edit some configuration files first that have been installed
together with the ActiveMessaging plug-in.

One of them, broker.yml, defines all connection parameters for the mes-
sage broker. We'll use ActiveMQ with the STOMP protocol, so our config-
uration looks as follows (ActiveMessaging supports more message bro-
kers, but for the rest of the recipe I assume you're running ActiveMQ
in its standard configuration):

Download messaging/activemessaging/msgdemo/config/broker.yml

development:
adapter: stomp
login: ""
passcode:
host: Tocalhost
port: 61613
reliable: true
reconnectDelay: 5

The next configuration file is messaging.rb. It defines symbolic names for
all message queues that we are going to use:

Download messaging/activemessaging/msgdemo/config/messaging.rb

ActiveMessaging::Gateway.define do |s|
s.destination :order, '/queue/orders.input’
s.destination :order_status, '/queue/orders.status'
end

Report erratum

this copy is (P1.0 printing, November 2008)

http://media.pragprog.com/titles/msenr/code/messaging/activemessaging/msgdemo/db/migrate/001_create_orders.rb
http://media.pragprog.com/titles/msenr/code/messaging/activemessaging/msgdemo/config/broker.yml
http://media.pragprog.com/titles/msenr/code/messaging/activemessaging/msgdemo/config/messaging.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=249

Line 1

39. CONNECT TO MESSAGE QUEUES WITH ACTIVEMESSAGING

orders.input

Rails Order
App Handler
<

orders.status

Figure 8.3: High-level architecture

In our application we need two messages queues: one for sending orders
(:order) and one for receiving order status messages (:order_status). The
symbolic :order queue is mapped to a physical message queue named
/queue/orders.input. It’s used in the OrderController class to send incom-
ing orders to the central order handler where they get processed asyn-
chronously:

Download messaging/activemessaging/msgdemo/app/controllers/order_controller.ro

require 'activemessaging/processor’

class OrderController < ApplicationController
include ActiveMessaging::MessageSender

publishes_to :order

def add
order = Order.new(params[:order])
if request.post? and order.save

flash.now[:notice] = 'Order has been submitted.'

publish :order, order.to_xml

redirect_to :action => 'show_status', :id => order.id
end

end

def show_status
@order = Order.find(params[:id])
end
end

Our first Rails controller with ActiveMessaging support does not differ
much from an ordinary controller.

Report erratum

this copy is (P1.0 printing, November 2008)

http://media.pragprog.com/titles/msenr/code/messaging/activemessaging/msgdemo/app/controllers/order_controller.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=250

39. CONNECT TO MESSAGE QUEUES WITH ACTIVEMESSAGING <251

e0no http://localhost:3000/order fadd

EIZ] =< http://localhost:3000/order/add = Q~ Got
Create New Order

Customer Name:
Maik Schmidt

Product:
New Ruby Book

Quantity:
1

_Submit Order)

)

Figure 8.4: Create a new order.

We mix in ActiveMessaging::MessageSender, and in line 6, we tell Rails
that this controller will send messages to the order queue we defined
earlier in messaging.ro.

The add() method works like an ordinary Rails action; it takes the form
parameters from a view, creates a new Order instance, and stores it in
the database. Then, in line 12, we use the publish() method to send an
XML representation of the newly created order to the order handler.

After the order has been placed, it will have the default status OPEN, as
you can see in Figure 8.5, on page 253. This status will not change no
matter how often you click the refresh button, because at the moment
we do not process the status messages published by the order handler.
To change this, we have to add a processor to our Rails application. The
corresponding generator is part of the ActiveMessaging plug-in, and you
can run it like this:

mschmidt> ruby script/generate processor OrderStatus

Report erratum

7 is (P1.0 printing, November 2008)

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=251

39. CONNECT TO MESSAGE QUEUES WITH ACTIVEMESSAGING

This creates a skeleton file named order_status_processor.ro that looks as
follows after we have added all functionality we need:

Download messaging/activemessaging/msgdemo/app/processors/order_status_processor.rb

tnel require 'rexml/document’

class OrderStatusProcessor < ApplicationProcessor
subscribes_to :order_status

def on_message(message)
doc = REXML: :Document.new(message)
order_id = doc.root.attributes['id"']
order_status = doc.root.text
10 order = Order.find(order_id)
order.status = order_status
order.save
logger.debug "Status of order #{order_id} is #{order_status}."
end
15 end

Similar to the OrderController, we have to declare that we are using mes-
saging facilities. In line 4, we tell Rails that our OrderStatusProcessor lis-
tens for new messages in the :order_status queue. That's all we have
to do, because the rest of the messaging mechanism is more or less
passive: whenever a new message arrives in the order status queue,
the on_message() action gets invoked automatically by ActiveMessaging.
In the action, we parse the XML document contained in the message,
extract its order ID and the order status, and store it in the database.
The incoming XML documents are very simple and typically look like
this:

<order-status id="47110815">SHIPPED</order-status>

To be concise, on_message() is not invoked completely automatically,
because that would mean the listener is running within the Rails frame-
work itself. To circumvent this, the ActiveMessaging developers have
created a poller daemon that waits for messages and invokes the appro-
priate Rails actions whenever it receives something new. The poller
script is part of the ActiveMessaging plug-in, and when you start it
like this:

mschmidt> ruby script/poller run

you'll see the following in your application’s log file:

ActiveMessaging: Loading ... app/processors/application.rb

ActiveMessaging: Loading ... app/processors/order_status_processor.rb

=> Subscribing to /queue/orders.status (processed by \
OrderStatusProcessor)

Report erratum

this copy is (P1.0 printing, November 2008)

http://media.pragprog.com/titles/msenr/code/messaging/activemessaging/msgdemo/app/processors/order_status_processor.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=252

39. CONNECT TO MESSAGE QUEUES WITH ACTIVEMESSAGING

®e00o http://localhost:3000/order/show_status/2

EIB [Z] g http://localhost:3000/order/show_status/2 & & Q~ Google
Status of Order 2

Customer: Maik Schmidt
Product: New Ruby Book
Quantity: 1

Status: OPEN

4
Figure 8.5: The order has been submitted.
orders.input orders.input
Rails Message Order
App Broker Handler

orders.status

AM
Poller

Figure 8.6: System design

For a more detailed view of the architecture we have developed in this
recipe so far, see Figure 8.6. The Rails application puts messages into a
queue named orders.input, which is managed by the ActiveMQ message
broker. The broker passes the message to the order handler, which
actually processes the order. When the order has been processed, the
order handler sends the result to another message queue named orders.
status, which is also managed by ActiveMQ. Afterward, the status mes-
sage is transmitted to the poller daemon, and the daemon turns it into
a call to the right on_message() action.

Report erratum

7 is (P1.0 printing, November 2008)

http://books.pragprog.com/titles/msenr/errata/add?pdf_page=253

39. CONNECT TO MESSAGE QUEUES WITH ACTIVEMESSAGING < 254

Only one component of the overall architecture is missing in our test
environment: the order handler. Perhaps we could use a copy of the
production system, but for testing purposes it’s always better to have
your own simulator at hand:

Download messaging/activemessaging/order_handler.rb

Line 1 require 'stomp'
require 'rexml/document’

- class OrderHandler
5 attr_accessor :user, :password, :host, :port

def initialize
@user, @password = "', "'
@host, @port = 'localhost', 61613
10 end

def handle_orders(in_queue, out_queue)
connection = Stomp::Connection.open @user, @password, @host, @port
connection.subscribe in_queue, { :ack => 'client' }
15 puts "Waiting for messages in #{in_queue}."
while true
message = connection.receive
body = message.body
- message_id = message.headers['message-id']
20 puts "Got a message: #{body} (#{message_id})"
- order_status = get_order_status(body)
options = { 'persistent' => 'false' }
connection.send out_queue, order_status, options
connection.ack message_id
25 end
connection.disconnect
end

private
30
def get_order_status(body)
doc = REXML: :Document.new(body)
order_id = doc.root.attributes['id"']
"<order-status id="'#{order_id}'>SHIPPED</order-status>"
35 end
end

Our OrderHandler’'s complete business logic can be found in the han-
dle_orders() method. Basically, it takes order documents from an input
queue, parses them, and creates output documents that have the same
order ID and a constant status (SHIPPED). That might not be very sophis-
ticated, but for testing the other components it's good not to have too
many variable parts.

Report erratum

this copy is (P1.0 prinfing, November 2008)

http://media.pragprog.com/titles/msenr/code/messaging/activemessaging/order_handler.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=254

39. CONNECT TO MESSAGE QUEUES WITH ACTIVEMESSAGING <« 255

®e00o http://localhost:3000/order/show_status/2
EIB @ http://localhost:3000 /order/show_status/2 & & Q-
Status of Order 2

Customer: Maik Schmidt
Product: New Ruby Book
Quantity: 1

Status: SHIPPED

4

Figure 8.7: The order has been shipped.

As usual, we start a STOMP connection, subscribe to a destination, and
start an event loop. This time we chose to use the client acknowledge
mechanism in line 14; in other words, we have to explicitly acknowl-
edge incoming messages in line 24. Otherwise, the message would be
delivered again by the message broker.

After you have started the order handler like this:
Download messaging/activemessaging/order_handler.rb

order_handler = OrderHandler.new

order_handler.handle_orders(
'/queue/orders.input’',
'/queue/orders.status’'

)

you can refresh your browser window a few times and eventually see a
picture similar to Figure 8.7.

We already knew that messaging with Ruby is easy, but ActiveMessag-
ing makes it even more comfortable. Using only a minimal set of con-
figuration parameters and three methods (publishes_to(), subscribes_to(),
and publish()), we’ve been able to combine an existing messaging archi-
tecture and a Rails application in record time.

Report erratum

this copy is (P1.0 printing, November 2008)

http://media.pragprog.com/titles/msenr/code/messaging/activemessaging/order_handler.rb
http://books.pragprog.com/titles/msenr/errata/add?pdf_page=255

The Pragmatic Bookshelf features books written by developers for developers. The titles
continue the well-known Pragmatic Programmer style, and continue to garner awards
and rave reviews. As development gets more and more difficult, the Pragmatic Program-
mers will be there with more titles and products to help you stay on top of your game.

Enterprise Recipes with Ruby and Rail’s Home Page
http://pragprog.com//titles/msenr
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates
http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact
with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy
http://pragprog.com/news
Check out the latest pragmatic developments in the news.

If you liked this PDF, perhaps you'd like to have a paper copy of the book. It's available
for purchase at our store: pragprog.com//titles/msenr.

ContoctlUs

Phone Orders: 1-800-699-PROG (+1 919 847 3884)
Online Orders: www.pragprog.com/catalog

Customer Service: orders@pragprog.com
Non-English Versions: translations@pragprog.com
Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

http://pragprog.com//titles/msenr
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com//titles/msenr
www.pragprog.com/catalog

	Networking & Messaging Recipes
	Connect to Message Queues with ActiveMessaging

