
Extracted from:

Learn Game Programming with Ruby
Bring Your Ideas to Life with Gosu

This PDF file contains pages extracted from Learn Game Programming with Ruby,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Learn Game Programming with Ruby
Bring Your Ideas to Life with Gosu

Mark Sobkowicz

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Brian P. Hogan (editor)
Potomac Indexing, LLC (index)
Cathleen Small; Liz Welch (copyedit)
Dave Thomas (layout)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-073-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—September 2015

https://pragprog.com
rights@pragprog.com

CHAPTER 3

Creating Your First Game
In this book, we’re going to use Ruby and Gosu to make a variety of games.
Our first one, Whack-A-Ruby, will be a pretty simple game in the spirit of
Whack-A-Mole. When the game is started, a window opens on the screen,
and an image of a ruby bounces around the window, blinking on and off.
Players try to hit the ruby with a hammer while it’s visible, scoring points
when they succeed. The finished game will look like this.

We’ll create this game step by step, typing code into the text editor and running
it. Along the way, you’ll become familiar with the most important classes and
methods in the Gosu library, and you’ll learn how they work together to provide
the framework for your games. When you’re finished, you’ll be able to:

• Make a window appear on your computer screen.
• Draw an image in the window.
• Move the image around.
• Detect mouse clicks.
• Display text on the window.

We’re ready to start. Fire up your text editor—it’s time to write some code.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/msgpkids
http://forums.pragprog.com/forums/msgpkids

Make an Empty Window
Each game you’ll write starts by opening a window on your screen. That
window is where you’ll bring your games to life, drawing images and making
them move. Gosu provides you with a class for drawing that window, called
Gosu::Window. This class does more than just draw the window; it also provides
methods that give structure to your games. Each time you write a game, you’ll
start by creating a subclass of Gosu::Window. For your first game, that subclass
will be called WhackARuby.

To create this class, make a new folder called WhackARuby, inside the Games
folder you made in Organize Your Workspace, on page ?. Using your text
editor, make a new file and save it in that folder with the name whack_a_ruby.rb.

To use its classes in your project, you’ll need to include Gosu with require. The
empty WhackARuby class looks like this.

WhackARuby/WhackARuby_1/whack_a_ruby.rb
require 'gosu'

class WhackARuby < Gosu::Window
end

You can run this code, but nothing will happen yet. You need to add a method
to your class to tell Gosu a few things about your window, and you need to
create and run an instance of your game.

The first method you’ll add to your new class is called initialize(). This method
is run when you create an instance of your class, so in your game it will be
run only once. In the initialize() method of WhackARuby, you’ll tell Gosu what size
window you want. Your window will be 800 pixels wide and 600 pixels tall.
Pixels are the unit of measurement for everything in Gosu. You can make
your windows bigger than this, but an 800×600-pixel window will fit on any
modern computer screen with some room to spare, so it’s a good size to use
if you’d like to share your games with friends. Inside your initialize() method,
you’ll call the super() method and pass in the dimensions of your window. This
sends your dimensions to the initialize() method of Gosu::Window.

You’ll also set the window caption in the initialize() method. You can give the
player some simple instructions—“Whack the Ruby!”—at the top of the window.

After your class code, you’ll create a single instance of your game and call its
show() method. You didn’t write the show() method—it’s part of Gosu. Your
whole file now looks like this.

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/msgpkids/code/WhackARuby/WhackARuby_1/whack_a_ruby.rb
http://pragprog.com/titles/msgpkids
http://forums.pragprog.com/forums/msgpkids

WhackARuby/WhackARuby_1/whack_a_ruby.rb
require 'gosu'

class WhackARuby < Gosu::Window
def initialize

super(800, 600)
self.caption = 'Whack the Ruby!'

end
end

window = WhackARuby.new
window.show

Run the program, using either the editor or the command line. If you’re using
Sublime Text, you can run your code with Ctrl-B on Windows or Command-
B on OS X. If you’re using the command line to run your program, navigate
to your game folder and then use the ruby command.

$ ruby whack_a_ruby.rb

However you run the program, an empty window will appear. Try changing
the window to 1000 pixels wide. Try changing the caption. Each time, run
the program and see the results. Then change it back, so you can keep follow-
ing these instructions. You should get used to running your program often.
It’s much easier to find any mistakes you might have made after typing a few
small changes than after making a whole bunch of changes in different places
in the file.

Regardless of how you configure the size of your window, it’s still empty and
black. So let’s look at how you draw images inside it.

But first, this is probably a good time to look at the programmer’s perennial
problem: my code doesn’t work.

What If It Doesn’t Work?
You’ve followed the tutorial, typed a bunch of code, and then run the game.
You expect the window to appear, but it doesn’t. What happened? How can
you fix it as quickly as possible and get back on track?

When you run your game, either with a text editor or with the command line,
the program generates output. This program output can be very informative
when your program isn’t working properly. You won’t see the output while
the game is running. You’ll only see it when the game is over or when it quits
unexpectedly.

• Click HERE to purchase this book now. discuss

Make an Empty Window • 7

http://media.pragprog.com/titles/msgpkids/code/WhackARuby/WhackARuby_1/whack_a_ruby.rb
http://pragprog.com/titles/msgpkids
http://forums.pragprog.com/forums/msgpkids

There are three ways a Ruby program can fail to work. We’ll explore all three
in more depth at various points in this book. The way the program fails tells
you something about the cause, and knowing something about the cause can
help you fix the problem and get back to making your game.

Your game doesn’t run at all. Ruby can’t understand your code, and you
have a syntax error. It is structured incorrectly in some way. One common
problem is that you left off an end statement. Read the program output
for hints.

Your game runs, but it crashes at some point. You might see a window for
just a fraction of a second, or the game might crash at some point while
you’re playing. One cause of this is that you spelled a method name
incorrectly or spelled a variable name differently in two places. In this
case, you can also read the program output to see whether that helps you
figure out the problem.

Your game runs, but it doesn’t behave as you expected. Problems like this can
be both frustrating and fun to solve. They are like puzzles, and later in
the book we’ll explore some ways to dive in and see what’s going wrong.

Let’s look at some program output. The following output was generated by
leaving the end off the initialize() method.

/Users/mark/Desktop/WhackARuby/whack_a_ruby.rb:10: syntax error,
unexpected end-of-input, expecting keyword_end
window.show

^
[Finished in 0.1s with exit code 1]

In this case, Ruby tells us that the error is a syntax error and that Ruby
reached the end of the file but was expecting an end statement. The error isn’t
on line 10, though, and putting the end after window.show doesn’t fix the problem.
With a missing end statement, Ruby tells you what the problem is, but you
have to find the spot yourself.

Here is an example of a misspelled method. In this case, window.show is replaced
with window.shoe.

/Users/mark/Desktop/WhackARuby/whack_a_ruby.rb:10: in `<main>':
undefined method `shoe' for #<WhackARuby:0x007fc7f1049780@__swigtype__="
_p_Gosu__Window"> (NoMethodError)
[Finished in 1.3s with exit code 1]

The error message has some confusing parts, but the meaning is clear. We
have an “undefined method shoe.”

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/msgpkids
http://forums.pragprog.com/forums/msgpkids

Whether you’re following a tutorial or creating your own game, run your pro-
gram as often as possible. This is the best thing you can do to make finding
errors easier, since the error is likely in the code you just wrote.

Getting Images for Your Games
When you think about your favorite video games, what do you see in your
mind? Whether you’re thinking of Angry Birds, Mario Kart, or Pac-Man, you’re
probably thinking of the memorable art in the game. Your games will need
art, and so do the games in this book.

Maybe you’re an artist, or you know one who wants to make art for your
games. If so, great! But if not, don’t despair. There is plenty of art online, and
much of it is free for you to use in your games. There is a list of some excellent
sources in Images and Sounds, on page ?, and you’ll find much more if you
search the Internet.

The art for Whack-A-Ruby comes from the website http://www.openclipart.org. The
images of a ruby and a hammer are in PNG format, which works well with
Gosu on both Windows and OS X. You can find these files in the source code
you downloaded in Organize Your Workspace, on page ?. Here is what the
images look like:

The website makes it clear that all of their art is in the public domain and
may be used for “unlimited commercial use.” I encourage you to pay attention
to the licenses under which art is released. Not everything on the Internet is
free for you to use in your games, but plenty is. Some artists allow use of
their art but require that you give them credit, also called attribution. Others
require that if you use their art in your game, you have to give your game
away under the same license they used to release their art. And others let
you use their art with no strings attached. If you want to make your own art,
go for it! Export it from your drawing program in PNG, GIF, or JPEG format,
and it will be ready to use in your games.

Draw the Ruby
The first thing you’ll draw in your empty window is the ruby. You have the
ruby image file in your game folder, but your WhackARuby class doesn’t know

• Click HERE to purchase this book now. discuss

Getting Images for Your Games • 9

http://www.openclipart.org
http://pragprog.com/titles/msgpkids
http://forums.pragprog.com/forums/msgpkids

about it yet. Gosu supplies you with a class for handling images, named
Gosu::Image. In your initialize() method, create an instance of Gosu::Image and load
your ruby image into it.

Add a line of code at the end of the initialize() method that loads the image file
into your game. Make sure this line is inside the initialize() method, right after
the line where the caption is set, and before the end that ends the initialize()
method.

Instance variable names always start with an @ symbol and are variables
that are accessible from all the methods in a class. To create the variable in
the initialize() method and use it in another method, you need to make it an
instance variable. As your games get more complex, you’ll be making a lot of
instance variables.

WhackARuby/WhackARuby_1/whack_a_ruby.rb
def initialize

super(800, 600)
self.caption = 'Whack the Ruby!'
@image = Gosu::Image.new('ruby.png')➤

end

The new line of code is shown highlighted, with an arrow pointing to it. The
rest of the code you’ve already written; it is shown here so you can see where
to put the new line.

Next, add a new method to the WhackARuby class, called draw(). The draw() method
is a special method in Gosu that is run automatically when you give the final
command window.show. In the draw() method of WhackARuby, you use the draw()
method of @image, the instance variable you created for the ruby.

It can be confusing at first to have two methods named draw(). The draw() method
of WhackARuby is going to draw all the things in your game. The draw() method
of @image is going to draw just the image of the ruby. Each image in your game
belongs to a separate instance of Gosu::Image, which you use to draw that image.

When you use the draw() method of Gosu::Image, you need to specify where you
want Gosu to draw the image by providing three arguments. Two arguments
give the location where you want the image—the first is how many pixels
horizontally from the left edge of the window, and the second is how many
pixels vertically from the top of the window. From now on, you’ll call these
numbers x and y, like the position of a point on a graph. They are a little
different from the coordinates you might be used to from math class, since
the y value is measured down from the top, rather than up from the bottom.
The third number tells Gosu how to layer images on top of each other, which

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/msgpkids/code/WhackARuby/WhackARuby_1/whack_a_ruby.rb
http://pragprog.com/titles/msgpkids
http://forums.pragprog.com/forums/msgpkids

you need to think about when you have more than one image. The following
figure shows the placement of an image in the window.

x

y

As shown in the figure, the position you give Gosu is where Gosu places the
top-left corner of the image. For an image such as ruby.png that doesn’t look
rectangular, the position indicates the top-left corner of a rectangle that holds
the image. This bounding rectangle is shown in the previous image but does
not appear in your game window. The computer treats all images as rectan-
gular, even ones that are a different shape.

You store these positions, x and y, as instance variables in your game. You
set their initial values, @x and @y, in the initialize() method after the line that
creates the @image instance variable. The lines you add here to the initialize()
method are highlighted.

WhackARuby/WhackARuby_1/whack_a_ruby.rb
def initialize

super(800, 600)
self.caption = 'Whack the Ruby!'
@image = Gosu::Image.new('ruby.png')
@x = 200➤

@y = 200➤

end

One thing you need to do in many games is to find the distance between
objects to see whether they overlap. This will be much easier if the variables
@x and @y represent the position of the center of the ruby, rather than its
top-left corner. You can do this by changing the values you send to the draw()
method. Instead of sending @x, you send @x - @width / 2, where @width is the

• Click HERE to purchase this book now. discuss

Draw the Ruby • 11

http://media.pragprog.com/titles/msgpkids/code/WhackARuby/WhackARuby_1/whack_a_ruby.rb
http://pragprog.com/titles/msgpkids
http://forums.pragprog.com/forums/msgpkids

width of your image. Likewise, you send @y - @height / 2 for the value of y. By
doing this, your image will be centered on @x, @y, as shown in the following
picture.

@x

@y

@y-@height/2

@x-@width/2

Set the initial values of @width and @height in the initialize() method. These values
are the width and height of the ruby image, measured in pixels. Add these
lines just after the lines that create the position variables and before the end
of the initialize() method.

WhackARuby/WhackARuby_1/whack_a_ruby.rb
def initialize

super(800, 600)
self.caption = 'Whack the Ruby!'
@image = Gosu::Image.new('ruby.png')
@x = 200
@y = 200
@width = 50➤

@height = 43➤

end

Then add the draw() method to WhackARuby. Put def draw just after the end of the
initialize() method. Make sure the end of the WhackARuby class is after the end of
the draw() method.

WhackARuby/WhackARuby_1/whack_a_ruby.rb
def draw

@image.draw(@x - @width / 2, @y - @height / 2, 1)
end

When you run the program now, you can see the ruby. It just sits there
sparkling, inviting us to hit it! Before we do, we’ll make it move and blink, so
it’s harder to hit.

• 12

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/msgpkids/code/WhackARuby/WhackARuby_1/whack_a_ruby.rb
http://media.pragprog.com/titles/msgpkids/code/WhackARuby/WhackARuby_1/whack_a_ruby.rb
http://pragprog.com/titles/msgpkids
http://forums.pragprog.com/forums/msgpkids

Ruby Refresher: Methods Are Like Functions

If you’re coming to Ruby from another language, such as Java or JavaScript, you
might be used to referring to named blocks of code as functions. In Ruby, methods
fill the same role, and they can have parameters and return values. We’ll be writing
a lot of methods, but if you’ve written functions in some other language, you’ll find
that methods are very similar.

One thing you might notice is that two different methods can have the same name.
In our game, the WhackARuby class has a method called draw(), and the Gosu::Image class
has a method called draw(). In the line of code @image.draw, Ruby knows to use the draw()
inside Gosu::Image, since @image is of type Gosu::Image. We sometimes say @image is a
Gosu::Image.

The draw() method of the WhackARuby class is inherited from the Gosu::Window class. It has
a special role in Gosu games, which is discussed in the next section.

• Click HERE to purchase this book now. discuss

Draw the Ruby • 13

http://pragprog.com/titles/msgpkids
http://forums.pragprog.com/forums/msgpkids

