
Extracted from:

Learn Game Programming with Ruby
Bring Your Ideas to Life with Gosu

This PDF file contains pages extracted from Learn Game Programming with Ruby,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2015 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Learn Game Programming with Ruby
Bring Your Ideas to Life with Gosu

Mark Sobkowicz

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Brian P. Hogan (editor)
Potomac Indexing, LLC (index)
Cathleen Small; Liz Welch (copyedit)
Dave Thomas (layout)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2015 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-073-8
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—September 2015

https://pragprog.com
rights@pragprog.com

CHAPTER 4

Creating a Sprite-Based Game
Many video games—from old classics such as Asteroids and Pac-Man, to
modern mobile games such as Flappy Bird and Temple Run—are made using
sprites. Sprite is a term that dates back to 1970s video game systems like the
Atari. It refers to a small image that moves around inside a scene. In a single
game there can be many sprites; often one sprite is controlled by the player,
and others are controlled by the program.

We’re going to make our own sprite-based game called Sector Five, in which
the player moves a spaceship around the screen by pressing keys. Waves of
enemy ships descend from above, and the player needs to shoot them before
they get to the bottom of the screen and destroy the player’s base. When we’re
finished, it will look like this.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/msgpkids
http://forums.pragprog.com/forums/msgpkids

Sector Five has four different kinds of sprites. One is a spaceship, controlled
by the player. Enemy ships are sprites that descend from the top of the screen.
Bullet sprites appear when the player presses the spacebar and move in a
straight line from the player ship. And animated explosion sprites appear
when the bullets hit enemy ships. Each kind of sprite acts differently, and
each has a Ruby class to describe its behavior. Once we’ve written the class
that describes what a sprite can do, we’ll create instances of that class, one
for each object in our game.

Sector Five is a more complicated and ambitious game than Whack-A-Ruby,
and we’ll be working on this game for three chapters. In this chapter you’ll
learn to:

• Create classes to represent different kinds of sprites.

• Use those classes to create sprites in your window.

• Move a sprite by pressing the keys.

• Use constants to adjust the play of your game and make it more challeng-
ing.

In the next chapter, you’ll learn how to add piles of enemy ships, all based
on one class, and how to tell when sprites collide with each other. In the final
chapter on Sector Five, you’ll learn how to add sound effects to your game.
When you’re finished, you’ll have all the tools you need to create your own
sprite-based games.

Start by copying the folder called SectorFive_starter from the source folder you
downloaded earlier into your Games folder. It has the images and sounds for
all three chapters’ worth of Sector Five. It also has a file, sector_five.rb, that
creates a window, just like the one we started with in Whack-A-Ruby.

SectorFive/SectorFive_starter/sector_five.rb
require 'gosu'

class SectorFive < Gosu::Window
def initialize

super(800, 600)
self.caption = 'Sector Five'

end
end

window = SectorFive.new
window.show

• 6

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/msgpkids/code/SectorFive/SectorFive_starter/sector_five.rb
http://pragprog.com/titles/msgpkids
http://forums.pragprog.com/forums/msgpkids

This window is where you’ll create, move, and draw your sprites. Run this
program to make sure all is well. An empty window will open on your screen.
The first sprite you’ll add is a spaceship for the player to fly around the screen.

The Player Class
Each sprite class in Sector Five manages one kind of sprite. A sprite class is
a collection of instance variables that store information about the sprite, and
methods, which are commands you give the sprite. When you’re creating a
new sprite class, make a list of the information the sprite needs to store and
the commands you want it to follow. The player ship sprite stores an image
and a position. Because it can rotate, it also stores the angle through which
its image has turned. The commands the ship follows include “turn right,”
“turn left,” and “draw.” A class diagram shows the instance variables and
methods for a class in a box. Here is one for the Player class:

class Player

@x
@y
@angle

draw()
turn_right()
turn_left()

@image

Instance variables
hold information {

Methods are
commands {

initialize()

The initialize() method is not really a command to the ship, but it’s included in
the diagram because without it, there won’t even be a ship.

You’ll create and test the Player class one piece at a time to learn how these
variables and methods work. Later, when you’ve had more experience, you
might write most of a sprite class before you test its methods.

Create a new file, player.rb, in the same folder as your game file, sector_five.rb.

First add just enough to player.rb so that you can create and draw the ship
image. To get there, create the initialize() and draw() methods of the Player class.
Then, in your SectorFive class, you’ll use those methods. In the initialize() method,
you just say “Make a new ship, based on class Player, and store it in the
@player variable.” Then, when it’s time to draw the ship, you just tell @player
to execute its draw() method.

• Click HERE to purchase this book now. discuss

The Player Class • 7

http://pragprog.com/titles/msgpkids
http://forums.pragprog.com/forums/msgpkids

In the initialize() method of the Player class, you create and set some instance
variables. Set the position of the ship, just as you did for the ruby in Whack-
A-Ruby. Create an image variable using the file ship.png in the images folder. The
initialize() method takes one argument, a reference to the window, which you’ll
use later to let the ship interact with the window edges.

SectorFive/SectorFive_1/player.rb
class Player

def initialize(window)
@x = 200
@y = 200
@angle = 0
@image = Gosu::Image.new('images/ship.png')

end
end

In the draw() method of the Player class, use a new method of Gosu::Image, draw_rot().
This method draws the image rotated by any angle, measured in degrees. Put
the draw() method after the initialize() method:

SectorFive/SectorFive_1/player.rb
def draw

@image.draw_rot(@x, @y, 1, @angle)
end

Another useful thing about the draw_rot() method is that it centers the image
on the x and y values you send as the first two parameters.

Back in SectorFive, you can now use these methods to add and draw the player.
First, include your new code in the sector_five.rb file, using require_relative. This
line goes just after require gosu and before your SectorFive class. When some of
the code is highlighted with arrows, only the highlighted code is new—the
rest is there to help you figure out where to put the new code.

SectorFive/SectorFive_1/sector_five.rb
require 'gosu'
require_relative 'player'➤

In the initialize() method of SectorFive, create the ship:

SectorFive/SectorFive_1/sector_five.rb
def initialize

super(800, 600)
self.caption = "Sector Five"
@player = Player.new(self)➤

end

Notice that you send self as a parameter to the initialize() method. The initialize()
method of Player takes the window as an argument. In the SectorFive class, the

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/msgpkids/code/SectorFive/SectorFive_1/player.rb
http://media.pragprog.com/titles/msgpkids/code/SectorFive/SectorFive_1/player.rb
http://media.pragprog.com/titles/msgpkids/code/SectorFive/SectorFive_1/sector_five.rb
http://media.pragprog.com/titles/msgpkids/code/SectorFive/SectorFive_1/sector_five.rb
http://pragprog.com/titles/msgpkids
http://forums.pragprog.com/forums/msgpkids

window is self, so that’s what you pass to Player.new(). You’ll do the same thing
each time you create a new sprite.

The SectorFive class now gets a draw() method, where you’ll eventually draw all
the sprites in the game. For now, just draw the player ship:

SectorFive/SectorFive_1/sector_five.rb
def draw

@player.draw
end

Before you run the game, if you’re running right from your editor, make sure
the sector_five.rb file is open in the front window or tab. If you run and nothing
happens, you’ve likely got the player.rb file at the front. When you run the game,
your ship will appear, as shown in the following picture:

We’ve gotten our ship to appear, but it just sits there. We want to let the
player move it around, not with the mouse, but using the keyboard.

What If It Doesn’t Work?

Now that your program consists of more than one file, errors you make can be in
either file. Maybe while following the tutorial you accidentally put the code for Play-
er.draw() in sector_five.rb. Hopefully you’d see that you had two methods named draw() in
SectorFive, but what if you missed this? When you run the game this way, you get this
error:

/Users/mark/Desktop/SectorFive_1/sector_five.rb:13: in `draw':
undefined method `draw_rot' for nil:Nil (NoMethodError) from
/Users/mark/Desktop/SectorFive_1/sector_five.rb:18: in `main'

The error is on the line that says @image.draw_rot(@x, @y, 1, @angle). The real clue is that
Ruby sees that the method draw_rot() has been called on something that is nil. @image
is nil, since it is not instantiated in SectorFive. The problem is that @image doesn’t belong
to SectorFive, but rather to Player. Don’t give up reading the error messages! You’ll get
to understand them better and better if you keep at it.

• Click HERE to purchase this book now. discuss

The Player Class • 9

http://media.pragprog.com/titles/msgpkids/code/SectorFive/SectorFive_1/sector_five.rb
http://pragprog.com/titles/msgpkids
http://forums.pragprog.com/forums/msgpkids

Move the Ship
The player moves the ship by pressing three keys. Gosu treats keys exactly
the same as mouse buttons and calls all of them buttons. You use the left
arrow, the right arrow, and the up arrow to move the ship. The ship moves
forward by firing its engines; the ship doesn’t have any way to fire the engines
backward. If you stop firing the engines, the ship coasts gradually to a stop.

Of course, this isn’t actually realistic, but our primary goal is to make the
game fun. Sometimes realistic is fun, and sometimes realistic is just frustrat-
ing. Our job as game designers is to strike the right balance. In this game,
we want moving the spaceship around to be fun. We use some ideas from
physics to make the ship feel like a real object that we are moving by pressing
three keys. We want the player to be in control of the ship, but not in total
control. The player has to develop a little skill to move the ship the way he or
she wants. And that is fun!

Turn the Ship
To rotate the ship, create two methods in the Player class, turn_right() and turn_left().
These methods change the @angle variable, and so they change the way the
ship is drawn.

SectorFive/SectorFive_1/player.rb
def turn_right

@angle += 3
end
def turn_left

@angle -= 3
end

Next, change the update() method of the SectorFive class to call turn_right() and
turn_left() when you press the arrow keys. Gosu gives you access to the keys,
just as it gives you access to the mouse. You might be able to figure out many
of the key constants, like Gosu::KbLeft for the left arrow key or Gosu::KbA for the
A key. There is a list of all the key constants in the documentation of the Gosu
class, which you can find at http://www.libgosu.org/rdoc/Gosu.html.

You use a method called button_down?() to see whether each key is pressed; this
method is part of the Gosu::Window class.

SectorFive/SectorFive_1/sector_five.rb
def update

@player.turn_left if button_down?(Gosu::KbLeft)
@player.turn_right if button_down?(Gosu::KbRight)

end

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/msgpkids/code/SectorFive/SectorFive_1/player.rb
http://www.libgosu.org/rdoc/Gosu.html
http://media.pragprog.com/titles/msgpkids/code/SectorFive/SectorFive_1/sector_five.rb
http://pragprog.com/titles/msgpkids
http://forums.pragprog.com/forums/msgpkids

(What do you think will happen if both keys are pressed?)

Look at what we just did to add a behavior to the player ship. In the Player
class, you wrote two methods, turn_right() and turn_left(). Then in the update()
method of SectorFive, you called those methods when the arrow keys were
pressed.

class Player

@x
@y
@angle

draw()

turn_right()

turn_left()

@image

><

Pressing the arrow keys calls the
turn_right() and turn_left()
methods of the player ship.

You can run the game now and turn the ship with the arrow keys. After you
spin the ship around a few times in each direction, you’ll realize that it’s time
to get the ship moving forward.

button_down() vs. button_down?()

In Whack-A-Ruby, you used the button_down(id) method to detect mouse clicks and key
presses. This method runs once for each time the button is clicked. To rotate the
player ship, you use the button_down?() method, which is a different method. The
question mark is part of the method name. When should you use each one?

button_down?()
Use this method when holding the button down should do something over and
over. Put it in the update() method, inside a conditional statement. You can use
this method to turn the ship; if you hold the arrow key down, the ship keeps
turning.

button_down(id)
When you want the press to do something, and then not do it again until you
release the button and press it again, use button_down(id). You used this method
to whack the ruby, and you’ll use it to fire bullets. Each key press will fire one
bullet, and holding down the key won’t do anything beyond the initial press. This
method is separate from the update() and draw() methods and is not used inside
them.

• Click HERE to purchase this book now. discuss

Move the Ship • 11

http://pragprog.com/titles/msgpkids
http://forums.pragprog.com/forums/msgpkids

Make the Ship Accelerate
When you press the forward arrow, you want the ship to accelerate. Accelerate
means to change the velocity. If your ship is sitting still and you press the
forward arrow, it moves in the direction it is pointing, speeding up as it goes.
If you turn the ship while it’s moving and press the up arrow, the ship moves
in a curved path, as shown in the following diagram.

1. Ship is moving to the right

2. Ship turns and accelerates

3. Ship follows curved path

To make the ship move like this, you need to add a few new variables and a
few new methods to the Player class. The variables will keep track of the ship’s
velocity. One method of the SectorFive class, accelerate(), will be called when you
hold down the up arrow key. Another one, move(), will get called every frame,
so the ship keeps moving even when you’re not pressing a key.

class Player

@x
@y
@angle

draw()
turn_right()
turn_left()

@image
@velocity_x
@velocity_y

move()
accelerate()

The up arrow key calls
the accelerate() method
of the player ship.

initialize()

Add the two new variables and set them to 0 in the initialize() method of the
Player class.

• 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/msgpkids
http://forums.pragprog.com/forums/msgpkids

SectorFive/SectorFive_1/player.rb
def initialize(window)

@x = 200
@y = 200
@angle = 0
@image = Gosu::Image.new('images/ship.png')
@velocity_x = 0➤

@velocity_y = 0➤

end

In the accelerate() method, change the velocity of the ship in the direction that
the ship is currently pointing. Gosu has some helper methods, offset_x() and
offset_y.(), that do some of the math for you.

The ship accelerates in the direction it is pointing.

Gosu.offset_x(acceleration)

Gosu.offset_y(acceleration)

@angle

The offset_x() method takes the angle and an amount as arguments and returns
the amount in the x direction, either positive or negative. You could do this
yourself using a little trigonometry, but since games make use of these calcu-
lations so often, Gosu provides them for convenience. Use these methods to
change the velocity in the accelerate() method of the Player class.

SectorFive/SectorFive_1/player.rb
def accelerate

@velocity_x += Gosu.offset_x(@angle, 2)
@velocity_y += Gosu.offset_y(@angle, 2)

end

You change the position of the ship in the move() method of the Player class.
This method is called every update, so that the ship moves even when no key
is being pressed.

SectorFive/SectorFive_1/player.rb
def move

@x += @velocity_x
@y += @velocity_y
@velocity_x *= 0.9
@velocity_y *= 0.9

end

• Click HERE to purchase this book now. discuss

Move the Ship • 13

http://media.pragprog.com/titles/msgpkids/code/SectorFive/SectorFive_1/player.rb
http://media.pragprog.com/titles/msgpkids/code/SectorFive/SectorFive_1/player.rb
http://media.pragprog.com/titles/msgpkids/code/SectorFive/SectorFive_1/player.rb
http://pragprog.com/titles/msgpkids
http://forums.pragprog.com/forums/msgpkids

In the move() method of the Player class, you also slow down the ship by multi-
plying the velocities by 0.9 each update. This acts like a sort of friction and
makes controlling the motion of the ship a little easier.

Now that your move() and accelerate() methods are ready, you call them in the
update() method of the SectorFive class. The ship moves every frame and acceler-
ates whenever you press the up arrow.

SectorFive/SectorFive_1/sector_five.rb
def update

@player.turn_left if button_down?(Gosu::KbLeft)
@player.turn_right if button_down?(Gosu::KbRight)
@player.accelerate if button_down?(Gosu::KbUp)➤

@player.move➤

end

Because you want the ship to accelerate continuously when the arrow key is
held down, you use the button_down?() method. Run the game now and move
the ship around. See whether you can fly in circles. Be careful! For now, you
can fly your ship right out of the window. If you do, it can be tough to get it
back in.

You’ve added the ship to the window, and you can move it around with the
arrow keys. In the SectorFive class, you detect button presses, and those button
presses call methods of the @player object to tell it what to do. The diagram
on page 15 shows how the Gosu methods in SectorFive work together with the
methods in the sprite class to let us create, move, and draw the player ship:

Before we add more sprites to the game, we’ll spend a little more time with
the ship, and you’ll learn how you can adjust the way it moves to suit your
players.

Use Constants to Adjust Your Game
You’ve put several numbers into the code that determine how the motion of
the ship responds to key presses. In the turn_right() and turn_left() methods, you
adjust the angle by 3. In the accelerate() method, you change @velocity_x and
@velocity_y, and in move() you slow the ship down. We’ll use constants to gather
these numbers into one place. These constants are named with all capital
letters, so you can keep them separate from variables and classes. The three
constants are named ROTATION_SPEED, ACCELERATION, and FRICTION.

To create the ROTATION_SPEED constant, add a line to the Player class, just after
class Player and before the initialize() method:

• 14

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/msgpkids/code/SectorFive/SectorFive_1/sector_five.rb
http://pragprog.com/titles/msgpkids
http://forums.pragprog.com/forums/msgpkids

initialize()

update()

draw()

These run until the game stops

Window Class Sprite Class

initialize()

move() +
others

draw()

Figure 1—The Gosu run loop with a sprite

SectorFive/SectorFive_2/player.rb
class Player

ROTATION_SPEED = 3

Then, in the turn_right() and turn_left() methods, replace the number 3 with the
constant you’ve created:

SectorFive/SectorFive_2/player.rb
def turn_right

@angle += ROTATION_SPEED
end

def turn_left
@angle -= ROTATION_SPEED

end

• Click HERE to purchase this book now. discuss

Move the Ship • 15

http://media.pragprog.com/titles/msgpkids/code/SectorFive/SectorFive_2/player.rb
http://media.pragprog.com/titles/msgpkids/code/SectorFive/SectorFive_2/player.rb
http://pragprog.com/titles/msgpkids
http://forums.pragprog.com/forums/msgpkids

If you run the game now, nothing has changed. But now you can change the
value of ROTATION_SPEED in one place to adjust your game. Now create two more
constants in the Player class, ACCELERATION and FRICTION. Put these right after
the ROTATION_SPEED declaration:

SectorFive/SectorFive_2/player.rb
class Player

ROTATION_SPEED = 3
ACCELERATION = 2➤

FRICTION = 0.9➤

Replace the number 2 in the accelerate() method with ACCELERATION:

SectorFive/SectorFive_2/player.rb
def accelerate

@velocity_x += Gosu.offset_x(@angle, ACCELERATION)➤

@velocity_y += Gosu.offset_y(@angle, ACCELERATION)➤

end

Then FRICTION replaces the number 0.9 in the move() method of the Player class:

SectorFive/SectorFive_2/player.rb
def move

@x += @velocity_x
@y += @velocity_y
@velocity_x *= FRICTION➤

@velocity_y *= FRICTION➤

end

After any or each of these replacements, you can run the game and everything
should be the same.

Also create constants in the SectorFive class for the width and height of the
window:

SectorFive/SectorFive_2/sector_five.rb
class SectorFive < Gosu::Window

WIDTH = 800➤

HEIGHT = 600➤

def initialize
super(WIDTH,HEIGHT)➤

self.caption = 'Sector Five'
@player = Player.new(self)

end

By using constants, you get code that is a little easier to understand and a
little easier to adjust. Now, if you want to adjust the rotation speed, you only
have to change it in one place, not two. Naming things is often better than
putting numbers right in your code.

• 16

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/msgpkids/code/SectorFive/SectorFive_2/player.rb
http://media.pragprog.com/titles/msgpkids/code/SectorFive/SectorFive_2/player.rb
http://media.pragprog.com/titles/msgpkids/code/SectorFive/SectorFive_2/player.rb
http://media.pragprog.com/titles/msgpkids/code/SectorFive/SectorFive_2/sector_five.rb
http://pragprog.com/titles/msgpkids
http://forums.pragprog.com/forums/msgpkids

Hitting the Edges
While flying the ship around, you probably flew the ship right out of the
window at one time or another. This can be pretty frustrating, since when
the ship is out of the window you can’t see which way it’s pointed, and it’s
very tough to maneuver it back into view. Think about how different games
solve this problem. Some games scroll, so that the window actually follows
the player. We’ll explore this solution later in the book, in Chapter 9, Making
a Side-Scrolling Game, on page ?. Some games wrap, so that if the player
sprite moves off the left edge, it reappears at the right edge of the window. In
Sector Five, we add bounds to our window, so that if the player ship gets to
the right, left, or bottom edge of the window, the ship is stopped by the sector
force fields. If the player ship ever goes off the top of the window, it is destroyed
by the enemy mother ship.

For the player ship to stop at the edges, it needs to know where the edges
are. You’ll encounter this problem again and again, where one object—in this
case, @player—needs to know some information about another object—in this
case, the window. To solve this, you have @player, when it is created, save the
reference to the window object in an instance variable called @window.

class Player

@x
@y
@angle

draw()
turn_right()
turn_left()

@image
@velocity_x
@velocity_y

move()
accelerate()

class SectorFive < Gosu::Window

@player

@window

update()
draw()

The window has an instance variable for the player ship, and
the player ship has an instance variable for the window.

The ship reaches the edge when its center gets within a distance of the edge
equal to the radius of the ship. So you also create an instance variable @radius
in the Player class. Add these two variables in the initialize() method of the Player
class:

• Click HERE to purchase this book now. discuss

Move the Ship • 17

http://pragprog.com/titles/msgpkids
http://forums.pragprog.com/forums/msgpkids

SectorFive/SectorFive_2/player.rb
def initialize(window)

@x = 200
@y = 200
@angle = 0
@image = Gosu::Image.new('images/ship.png')
@velocity_x = 0
@velocity_y = 0
@radius = 20➤

@window = window➤

end

The Gosu::Window class has methods that let you use your @window reference to
get the width and height of the window. These methods are called width() and
height(). You handle the ship reaching the force fields by adding to the move()
method of the Player class. When the ship reaches or overshoots the edge, you
move it back to the edge and set its velocity in that direction to 0. The player
ship can still go off the top of the window. In Chapter 6, Adding Scenes and
Sounds, on page ?, you’ll destroy the player ship and end the game when
that happens.

SectorFive/SectorFive_2/player.rb
def move

@x += @velocity_x
@y += @velocity_y
@velocity_x *= FRICTION
@velocity_y *= FRICTION
if @x > @window.width - @radius➤

@velocity_x = 0➤

@x = @window.width - @radius➤

end➤

if @x < @radius➤

@velocity_x = 0➤

@x = @radius➤

end➤

if @y > @window.height - @radius➤

@velocity_y = 0➤

@y = @window.height - @radius➤

end➤

end

Run the game now, and the player ship will stop at the left, right, and bottom
borders of the window. Next you’ll add enemy ships, falling from above.

• 18

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/msgpkids/code/SectorFive/SectorFive_2/player.rb
http://media.pragprog.com/titles/msgpkids/code/SectorFive/SectorFive_2/player.rb
http://pragprog.com/titles/msgpkids
http://forums.pragprog.com/forums/msgpkids

