
Extracted from:

Core Data
Apple’s API for Persisting Data on Mac OS X

This PDF file contains pages extracted from Core Data, published by the Pragmatic

Bookshelf. For more information or to purchase a paperback or PDF copy, please visit

http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2009 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com




Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2009 Marcus S. Zarra.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-32-8

ISBN-13: 978-1-934356-32-6

Printed on acid-free paper.

B6.0 printing, July 29, 2009

Version: 2009-8-25

http://www.pragprog.com


Chapter 10

Core Data and iPhone
Core Data is now available on the iPhone. Introduced as part of the

iPhone 3.0 SDK, the API is nearly identical to the desktop version. There

are, however, some very important differences that we will review in this

chapter.

This chapter assumes that you have at least a basic understanding of

how code is written for the Cocoa Touch devices and are comfortable

with the UIViewController design. If you are not, then I highly recommend

reading iPhone SDK Development [?]before proceeding with this chap-

ter.

10.1 Similarities and Differences

The Core Data API is nearly identical on both the desktop and Cocoa

Touch devices. Of course, “nearly identical” and “identical” are not the

same thing. We need to be conscious of a few very important differences

between the desktop and Cocoa Touch before designing an application

to run on Cocoa Touch.

Creating a New Core Data Cocoa Touch Project

When starting a new Cocoa Touch project, it is possible to add Core

Data to many of the existing templates. To do this, select the template

that you want to start with, and then select the “Use Core Data for

storage” checkbox before progressing in the creation of the template.

To demonstrate using Core Data on the iPhone, we will be using the

Navigation-based Application template with the “Use Core Data for stor-

age” box selected, as shown in Figure 10.1, on the next page. We will be

starting this project in Section 10.4, Recipes for the iPhone, on page 195.



SIMILARITIES AND DIFFERENCES 186

Figure 10.1: iPhone OS New Project dialog box

Upgrading an Existing Application to Core Data

Many of us have been developing iPhone applications since the SDK’s

original release, so it is quite likely that you have an existing application

that you want to integrate with Core Data. Fortunately, it does not take

very much code to build up the Core Data stack in an existing project.

Adding a Data Model to the Project

Just like on the desktop, Core Data on Cocoa Touch requires a data

model to define the structure of the data entities. Therefore, the first

step is to add a data model to the project by selecting File > New File.

Within the dialog box that appears, if we select the Resources section,

we can then create a new data model, as shown in Figure 10.2, on the

next page.

In addition to creating a new data model, we can also use an existing

data model from an existing application. Later in this chapter, in Sec-

tion 10.4, Recipes for the iPhone, on page 195, we use the data model

from our desktop recipes application in our new iPhone application.

The data models are compatible between the desktop and Cocoa Touch,

which allows us to share not only models but the underling persistent

stores as well.

Adding the Core Data Code

Once we have a data model to work with, we next need to add the code

to load the Core Data stack. The exact placement of this code depends

on the design of your application. Since there are no document-style

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/mzcd


SIMILARITIES AND DIFFERENCES 187

Figure 10.2: Adding a data model to the project

applications on the iPhone, it is most common to have a single data

model and a single persistent store per Cocoa Touch application. Although

I still like to put the Core Data code in the application delegate, it might

make sense to put it somewhere else. No matter where the code is

placed, it is very similar to the desktop. First we need to initialize the

data model.

Download RecipeCT/Classes/AppDelegate.m

- (NSManagedObjectModel*)managedObjectModel

{

if (managedObjectModel) return managedObjectModel;

NSString *path = [[NSBundle mainBundle] pathForResource:@"DataModel"

ofType:@"momd"];

if (!path) {

path = [[NSBundle mainBundle] pathForResource:@"DataModel"

ofType:@"mom"];

}

NSAssert(path != nil, @"Unable to find DataModel in main bundle");

NSURL *url = [NSURL fileURLWithPath:path];

managedObjectModel = [[NSManagedObjectModel alloc] initWithContentsOfURL:url];

return managedObjectModel;

}

This could should look quite familiar because it is identical to the way

you would build the NSManagedObjectModel on the desktop. We get the

path for the .mom file (or the .momd if there are multiple versions of the

data model) and use it to initialize the NSManagedObjectModel.

Download RecipeCT/Classes/AppDelegate.m

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/mzcd/code/RecipeCT/Classes/AppDelegate.m
http://media.pragprog.com/titles/mzcd/code/RecipeCT/Classes/AppDelegate.m
http://www.pragprog.com/titles/mzcd


SIMILARITIES AND DIFFERENCES 188

- (NSString*)documentsFolder

{

NSArray *paths = NSSearchPathForDirectoriesInDomains(NSDocumentDirectory,

NSUserDomainMask, YES);

NSString *filePath = [paths objectAtIndex:0];

return filePath;

}

Before we construct the NSPersistentStoreCoordinator, we need to decide

where to store the persistent store file. On the desktop in an applica-

tion with a single persistent store, we would save the file to the Applica-

tion Support folder. However, on Cocoa Touch devices, there is no such

location. Instead, each application has its own sandboxed Documents

directory designed for the storage of files. This is where we will write our

persistent store. Using code similar to what we used on the desktop to

find the Application Support folder, we will find the Documents folder

specific to our application.

Download RecipeCT/Classes/AppDelegate.m

- (NSPersistentStoreCoordinator*)persistentStoreCoordinator;

{

if (persistentStoreCoordinator) return persistentStoreCoordinator;

NSFileManager *fileManager = [NSFileManager defaultManager];

NSString *docFolder = [self documentsFolder];

if (![fileManager fileExistsAtPath:docFolder]) {

[fileManager createDirectoryAtPath:docFolder attributes:nil];

}

NSString *filePath = nil;

filePath = [docFolder stringByAppendingPathComponent:@"recipes.sqlite"];

if (![fileManager fileExistsAtPath:filePath]) {

NSString *defaultDB = [[NSBundle mainBundle] pathForResource:@"recipes"

ofType:@"sqlite"];

NSError *error = nil;

if (![[NSFileManager defaultManager] copyItemAtPath:defaultDB

toPath:filePath

error:&error]) {

NSLog(@"%@:%s Error copying file %@", [self class], _cmd, error);

}

}

NSURL *url = [NSURL fileURLWithPath:filePath];

NSManagedObjectModel *mom = [self managedObjectModel];

persistentStoreCoordinator = [[NSPersistentStoreCoordinator alloc]

initWithManagedObjectModel:mom];

NSError *error = nil;

if ([persistentStoreCoordinator addPersistentStoreWithType:NSSQLiteStoreType

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/mzcd/code/RecipeCT/Classes/AppDelegate.m
http://www.pragprog.com/titles/mzcd


SIMILARITIES AND DIFFERENCES 189

configuration:nil

URL:url

options:nil

error:&error]) {

return persistentStoreCoordinator;

}

[persistentStoreCoordinator release], persistentStoreCoordinator = nil;

NSDictionary *ui = [error userInfo];

if (![ui valueForKey:NSDetailedErrorsKey]) {

NSLog(@"%@:%s Error adding store %@", [self class], _cmd,

[error localizedDescription]);

} else {

for (NSError *suberror in [ui valueForKey:NSDetailedErrorsKey]) {

NSLog(@"%@:%s Error: %@", [self class], _cmd,

[suberror localizedDescription]);

}

}

NSAssert(NO, @"Failed to initialize the persistent store");

return nil;

}

Once we have the NSManagedObjectModel constructed, the next step

is to build the persistent store coordinator. Again, this code is nearly

identical to the desktop version but with a few differences. First, for the

moment, I have turned off the versioning check because we have only

one version on the iPhone. When we release version 2 in the future, we

will need to turn that back on.

The second major difference has to do with default settings. We initially

check for the existence of a database file in the application’s Docu-

ments directory, but if it does not exist, then we copy one from within

the bundle of the application itself. This gives us a set of “defaults” or

“samples” for the user who is accessing the iPhone application for the

very first time. By doing this, we can present the user with an inviting

list of recipes when they launch our application instead of an empty

table view.

Download RecipeCT/Classes/AppDelegate.m

- (NSManagedObjectContext*)managedObjectContext

{

if (managedObjectContext) return managedObjectContext;

NSPersistentStoreCoordinator *coord = [self persistentStoreCoordinator];

if (!coord) return nil;

managedObjectContext = [[NSManagedObjectContext alloc] init];

[managedObjectContext setPersistentStoreCoordinator:coord];

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/mzcd/code/RecipeCT/Classes/AppDelegate.m
http://www.pragprog.com/titles/mzcd


MEMORY MANAGEMENT 190

return managedObjectContext;

}

The last method we need to implement is the -managedObjectContext

method. Since we did all the hard work either in the -managedObjectModel

method or in the -persistentStoreCoordinator method, this method is even

simpler than its desktop cousin. We request a reference to the NSPer-

sistentStoreCoordinator, and assuming that it is not nil, we initialize an

NSManagedObjectContext, add the NSPersistentStoreCoordinator to it, and

return the resulting NSManagedObjectContext. Since we will either have

an existing persistent store from the last time the user ran the applica-

tion or have a default store copied over, there is no need to check the

Type table as we have previously. It is guaranteed either to be there or

to be intentionally cleared out by the user.

Persistent Store Formats

Similar to Core Data on the desktop, several persistent formats are

available on Cocoa Touch devices. However, one format is missing that

I have grown to love. The XML format is not available currently on the

iPhone. I suspect this is to force us to use something that is far more

memory efficient such as the SQLite store. It is also possible that it was

skipped because of dependencies on other APIs that are also not avail-

able at this time. Whatever the reason, the XML store is not available to

us, and we should be using the SQLite store in every situation possible.

Besides the SQLite persistent store format, we also have access to the

binary and in-memory formats. However, both of these formats require

that the entire object hierarchy be loaded into memory, and that is

something we generally cannot afford on a Cocoa Touch device. There-

fore, unless there is a very solid design reason to use another store

format, SQLite should be used.

10.2 Memory Management

One of the most important differences we need to keep in mind while

working with Core Data on the iPhone is the management of memory.

Depending on which Cocoa Touch device is targeted, we could have

as little as 20MB of memory to work with. This is drastically different

from the modern desktop that measures memory in gigabytes! There-

fore, Core Data, to be a good citizen on this much smaller device, must

handle memory differently.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/mzcd


The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Core Data’s Home Page

http://pragprog.com/titles/mzcd

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/mzcd.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/mzcd
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/mzcd
www.pragprog.com/catalog



