
Extracted from:

Core Data, 2nd Edition
Data Storage and Management for iOS, OS X, and iCloud

This PDF file contains pages extracted from Core Data, 2nd Edition, published by
the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printer versions; the

content is otherwise identical.

Copyright © 2013 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Core Data, 2nd Edition
Data Storage and Management for iOS, OS X, and iCloud

Marcus S. Zarra

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Colleen Toporek (editor)
Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
David J Kelly (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2013 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-937785-08-6
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2013

http://pragprog.com

4.2 Optimizing Your Data Model

When we design our data model, we need to consider several factors. Where
we put our binary data can be extremely important because its size and
storage location plays a key role in the performance of our application. Like-
wise, relationships must be carefully balanced and used appropriately. Also,
entity inheritance, a powerful feature of Core Data, must be used with a del-
icate hand because the underlying structure may be surprising.

Although it is easy to think of Core Data as a database API, we must
remember that it is not and that structuring the data with data normalization
may not yield the most efficient results. In many cases, denormalizing the
data can yield greater performance gains.

Where to Put Binary Data

One of the easiest ways to kill performance in a Core Data application is to
stick large amounts of binary data into frequently accessed tables. For
example, if we were to put the pictures of our recipes into the recipe table,
we would start seeing performance degradation after only a couple hundred
recipes had been added. Every time we accessed a Recipe entity, we would
have to load its image data, even if we were not going to display the image.
Since our application displays all the recipes in a list, this means every image
would reside in memory immediately upon launch and remain there until the
application quit. Imagine this situation with a few thousand recipes!

But where do we draw the line? What is considered a small enough piece of
binary data to fit into a table, and what should not be put into the repository
at all?

If you are developing an application that is targeting iOS 6.0 or greater (or
Mac OS X 10.8 or greater), the answer is simple: turn on external binary
storage in the model and let Core Data solve the problem for you (see Figure
13, Turn on the external record flag, on page 6). This feature instructs Core
Data to determine how to store binary data. With this flag on, Core Data
decides whether the image is small enough to store inside of the SQLite file
or whether it is too big and therefore should be stored on disk separately. In
either case, the decision is an implementation detail from the perspective of
our application. We access the binary data just like any other attribute on
the entity.

If the application is still targeting an older version of the operating system
(iOS or Mac OS X), then the application is responsible for dealing with binary
data in a performant way.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mzcd2
http://forums.pragprog.com/forums/mzcd2

Figure 13—Turn on the external record flag.

Small Binary Data

Anything smaller than 100 kilobytes is considered to be small binary data.
Icons or small avatars are a couple examples of data of this size. When
working with something this small, it is most efficient to store it directly as
a property value in its corresponding table. The performance impact of binary
data this size is negligible. The transformable attribute type is ideal for this
use.

Medium Binary Data

Medium binary data is anything larger than 100 kilobytes and smaller than
1 megabyte in size. Average-sized images and small audio clips are a few
examples of data in this size range. Data of this size can also be stored
directly in the repository. However, the data should be stored in its own table
on the other end of a relationship with the primary tables. This allows the
binary data to remain a fault until it is actually needed. In the previous recipe
example, even though the Recipe entity would be loaded into memory for dis-
play, the image would be loaded only when it is needed by the UI.

SQLite has shown itself to be quite efficient at disk access. There are cases
where loading data from the SQLite store can actually be faster than direct
disk access. This is one of the reasons why medium binary data can be stored
directly in the repository.

Large Binary Data

Large binary data is anything greater than 1 megabyte in size. Large images,
audio files, and video files are just some examples of data of this size. Any

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mzcd2
http://forums.pragprog.com/forums/mzcd2

binary data of this size should be stored on disk as opposed to in the reposi-
tory. When working with data of this size, it is best to store its path information
directly in the primary entity (such as the Recipe entity) and store the binary
data in a known location on disk (such as in the Application Support subdi-
rectory for your application).

Entity Inheritance

Entity inheritance is a very powerful feature within Core Data. It allows you
to build an object-like inheritance tree in your data model. However, this
feature comes at a rather large cost. For example, let’s look at an example
model that makes moderate use of entity inheritance, as shown here:

The object model itself looks quite reasonable. We are sharing name, desc, and
a one-to-many relationship to the ImageEntity. However, the underlying table
structure actually looks like this:

The reason for this is how Core Data handles the object model to relational
table mapping. Instead of creating one table for each child object, Core Data
creates one large table that includes all the properties for the parent entity
as well as its children. The end result is an extremely wide and tall table in
the database with a high percentage of empty values.

Although the entity inheritance feature of Core Data is extremely useful, we should
be aware of what is going on underneath the object model to avoid a performance
penalty. We should not treat entity inheritance as an equal to object inheritance.
There is certainly some overlap, but they are not equal, and treating them as such
will have a negative impact on the performance of the repository.

• Click HERE to purchase this book now. discuss

Optimizing Your Data Model • 7

http://pragprog.com/titles/mzcd2
http://forums.pragprog.com/forums/mzcd2

Denormalizing Data to Improve Performance

Although the most powerful persistent store available for Core Data is a
database, we must always be conscious of the fact that Core Data is not just
a database. Core Data is an object hierarchy that can be persisted to a
database format. The difference is subtle but important. Core Data is first a
collection of objects that we use to display data in a user interface of some
form and allow the user to access that data. Therefore, although database
normalization might be the first place to look for performance improvements,
we should not take it too far. There are six levels of database normalization,1

but a Core Data repository should rarely, if ever, be taken beyond the second
level. There are several cases where we can gain a greater performance benefit
by denormalizing the data.

Search-Only Properties

Searching within properties can be quite expensive. For properties that have
a large amount of text or, worse, Unicode text, a single search field can cause
a huge performance hit. One way to improve this situation is to create a
derived attribute based on the text in an entity. For example, searching in
our description property of the Recipe entity can potentially be very expensive
if the user has verbose descriptions and/or uses Unicode characters in the
description.

To improve the performance of searches in this field, we could create a second
property on the Recipe entity that strips the Unicode characters from the
description and also removes common words such as a, the, and, and so on.
If we then perform the search on this derived property, we can drastically
improve search performance.

The downside to using search-only properties is that we need to maintain
them. Every time the description field is edited, we need to update the derived
property as well.

Expensive Calculations

In a normalized database, calculated values are not stored. It is considered
cheaper to recalculate the value as needed than to store it in the database.
However, from a user experience point of view, the opposite can frequently
be true. In cases where the calculation takes a human-noticeable amount of
time, it may very well be better for the user if we were to store that calculation
in the entity and recalculate it only when one of its dependent values has

1. See http://en.wikipedia.org/wiki/Database_normalization for details.

• 8

• Click HERE to purchase this book now. discuss

http://en.wikipedia.org/wiki/Database_normalization
http://pragprog.com/titles/mzcd2
http://forums.pragprog.com/forums/mzcd2

changed. For example, if we store the first and last names of a user in our
Core Data repository, it might make sense to store the full name as well.

Intelligent Relationships

Relationships in a Core Data model are like salt in a cooking recipe. Too much
and you ruin the recipe; too little and something is missing. Fortunately,
there are some simple rules we can follow when it comes to relationships in
a Core Data repository.

Follow the Object Model

Core Data is first and foremost an object model. The entities in our model
should represent the data as accurately as possible. Just because a value
might be duplicated across several objects (or rows from the database point
of view) does not mean it should be extruded into its own table. Many times
it is more efficient for us to store that string several times over in the entity
itself than to traverse a relationship to get it.

Traversing a relationship is generally more expensive than accessing an
attribute on the entity. Therefore, if the value being stored is simple, it’s better
to leave it in the entity it is associated with.

Separate Commonly Used from Rarely Used Data

If the object design calls for a one-to-many relationship or a many-to-many
relationship, we should definitely create a relationship for it. This is usually
the case where the data is more than a single property or contains binary
data or would be difficult to properly model inside the parent object. For
example, if we have a user entity, it is more efficient to store the user’s address
in its own object as opposed to having several attributes in the user object
for address, city, state, postal code, and so on.

A balance needs to be carefully maintained between what is stored on the
other end of a relationship and what is stored in the primary entity. Crossing
key paths is more expensive than accessing attributes, but creating objects
that are very wide also slows down data access.

• Click HERE to purchase this book now. discuss

Optimizing Your Data Model • 9

http://pragprog.com/titles/mzcd2
http://forums.pragprog.com/forums/mzcd2

