
Extracted from:

Core Data in Objective-C, Third Edition
Data Storage and Management for iOS and OS X

This PDF file contains pages extracted from Core Data in Objective-C, Third Edition,
published by the Pragmatic Bookshelf. For more information or to purchase a

paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2016 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Core Data in Objective-C, Third Edition
Data Storage and Management for iOS and OS X

Marcus S. Zarra

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)
Potomac Indexing, LLC (index)
Liz Welch (copyedit)
Gilson Graphics (layout)
Janet Furlow (producer)

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2016 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-123-0
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—June 2016

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Multithreading is one of the great double-edged swords of programming. If
it’s done correctly, it can be a real boon to your application; done incorrectly,
it leads to strange, unreproducible errors in the application. Multithreading
has a tendency to polarize developers: they either swear that it’s necessary
for any application to perform properly or declare it’s to be avoided at all costs.
The truth, of course, is somewhere in the middle. Multithreading is a vital
piece of the overall performance puzzle. While adding more threads won’t
make your application automatically faster, it can make it “feel” faster to the
user. That perception is what we’re going to focus on in this chapter.

It’s a common misconception among developers that the point of adding
threads to an application is to improve performance. While there’s no argument
that proper threading support can improve performance in an application,
treating threading like a silver bullet is a sure way to disaster.

Threading should be introduced to an application as part of the design process,
whenever there’s a situation where the application can or should be doing
more than one thing. Any situation during the application design where an
operation is needed but the user doesn’t need to wait on that operation is a
perfect situation for an additional thread.

Here are some common operations that fall into this category:

• Exporting data to a web service
• Importing data from a web service
• Recalculating data (totals and balances)
• Caching images
• Caching videos

And the list goes on. In addition to these concepts there’s the concept of
anticipating the user and what data the user is going to want next. If, for
example, you’re developing a news application, it makes sense to load the full
news articles, images, videos, and so forth while the user is still scrolling
through the list of articles. Ideally your application will have the data loaded
and ready to display before the user selects it.

When an application can correctly predict what data a user is going to want
to see before the user requests it, that application reaches a whole new level
in user experience.

The purpose of adding threads to your application is to improve user experi-
ence by offloading work the user doesn’t need to be blocked by, as well as
predictively load data before the user needs it.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mzcd3
http://forums.pragprog.com/forums/mzcd3

With that goal for threading in mind, let’s look at how to use Core Data in a
multithreaded environment.

Threading and Core Data
Throughout the life of the Core Data framework, the approach to using Core
Data with threading has changed many times. Originally there was no support
for threading other than “figure it out,” which evolved into the basic rule of
“A context and its data must stay on one thread.”

With the introduction of iOS 5.0 and OS X 10.8, Core Data began utilizing
GCD (Grand Central Dispatch) and blocks that were introduced to the overall
system in the previous generation. To further define how threading should
be approached with Core Data, the threading model was again refined in iOS
8.0 and OS X 10.10, and yet again in iOS 9.0 and OS X 10.11.

With these changes, the threading model for Core Data has become a binary
decision. We can use Core Data on the main thread (also known as the UI
thread), or we can use Core Data on a background thread for things that
don’t directly impact the UI thread, which is a binary question. This evolution
has been an incredibly good thing for Core Data. The question of how and
when to use threads has been boiled down to a single Boolean question.

Starting with iOS 9.0 and OS X 10.11, the generic -init method of the NSManage-
dObjectContext has been deprecated. Previously, when you called this initializer
an instance of NSManagedObjectContext was returned that was associated with
the thread that created it.

This type of creation was one of the parts of Core Data and threading that
confused developers and therefore was finally removed. Now, when you want
a new instance of NSManagedObjectContext you need to explicitly specify what
thread that the NSManagedObjectContext will be associated with:

NSManagedObjectContext *moc = nil;
moc = [[NSManagedObjectContext alloc] initWithConcurrencyType:${XXX}];

With this initializer, we can pass in two options for ${XXX}:

• NSMainQueueConcurrencyType: This option will configure the NSManagedObjectContext
so that it can only be run on the main queue/thread.

• NSPrivateQueueConcurrencyType: This option will configure the NSManagedObject-
Context so that it can only be run on a private queue/thread.

As mentioned, this is now a binary decision when we’re initializing an NSMan-
agedObjectContext. If the NSManagedObjectContext is going to be used with the user

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mzcd3
http://forums.pragprog.com/forums/mzcd3

interface, then the NSMainQueueConcurrencyType will be used. Otherwise you must
use the NSPrivateQueueConcurrencyType.

Working on the Main Queue
In general, working on the main queue hasn’t changed from the original
design. Assuming you’re working with an NSManagedObjectContext that’s configured
to run on the main queue, you’d access that NSManagedObjectContext the exact
same way as before.

The big difference is when your code is on another queue and you need to do
some data work on the main queue. Getting that work onto the main queue
has changed, fortunately for the better. This improvement is in the form of
two methods: -performBlock: and -performBlockAndWait:.

Introducing -performBlock:
The goal of -performBlock: is to guarantee that a block of code is being executed
on the correct queue, which is the queue that the NSManagedObjectContext is
associated with. Therefore, if you have a block of code that you need to execute
on the main queue against the NSManagedObjectContext associated with the main
queue, you can do the following:

NSManagedObjectContext *moc = ...; //Reference to main queue context
[moc performBlock:^{

NSFetchRequest *request = ...;
//... Define the request
NSError *error = nil;
NSArray *results = [moc executeRequest:request error:&error];
if (!results) {

NSLog(@"Failed to fetch: %@\n%@", [error localizedDescription],
[error userInfo]);

}
// Do something with the results

}];

In this example, you retrieve a reference to the existing NSManagedObjectContext
that’s instantiated against the main queue. From there you call -performBlock:
and inside that block is where you do all of the work that needs to be per-
formed on the main queue against Core Data.

The call to -performBlock: takes the block of code and puts in the “todo” list for
the queue associated with the NSManagedObjectContext that it’s called against.
As soon as that queue gets to the block of code, it will be executed. Generally
the execution happens right away, but if that queue is busy with another

• Click HERE to purchase this book now. discuss

Working on the Main Queue • 7

http://pragprog.com/titles/mzcd3
http://forums.pragprog.com/forums/mzcd3

task (for example, it has another block of code to execute), then the block will
be performed later.

Calling -performBlock: isn’t a “blocking” call, which means that the queue that
calls -performBlock: won’t be halted or paused and the line of code after the
-performBlock: call will be executed immediately—most likely before the block is
executed.

What this also means is that the -performBlock: call is re-entrant. While you’re
inside one call to -performBlock:, you can kick off another call. Your second call
to -performBlock: is guaranteed to be executed after the first call. Therefore, you
could do something clever like this:

NSManagedObjectContext *moc = ...; //Reference to main queue context
[moc performBlock:^{

[moc performBlock:^{
NSError *error = nil;
if (![moc save:&error]) {
NSLog(@"Failed to save: %@\n%@", [error localizedDescription],

[error userInfo]);
abort();

}
}];
NSFetchRequest *request = ...;
//... Define the request
NSError *error = nil;
NSArray *results = [moc executeRequest:request error:&error];
if (!results) {

NSLog(@"Failed to fetch: %@\n%@", [error localizedDescription],
[error userInfo]);

}
// Do something with the results

}];

And the -save: call would be executed after the data manipulation code. This
effectively gives you a try/finally pattern.

Introducing -performBlockAndWait:
There are plenty of situations where you want to execute code on the main
queue but you want your background queue (aka the non-main queue) to
wait for that execution to be completed. That’s where the API -performBlockAndWait:
is used. The parameters are exactly the same, but the behavior is a little bit
different.

The main difference is that this API call will block the calling queue until the
block is completed. This also means that -performBlockAndWait: is not re-entrant.

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mzcd3
http://forums.pragprog.com/forums/mzcd3

Working off the Main Queue
Now that threading with Core Data has been reduced to a binary question,
the other type of NSManagedObjectContext we’ll look at is NSPrivateQueueConcurrencyType.

The primary difference between the two context types is what queue the
context is associated with. When you’re working with an NSMainQueueConcurren-
cyType context, the context automatically associates itself with the main queue.
When you initialize an NSPrivateQueueConcurrencyType context, the context will
associate itself with a non-main queue that’s private to the context.

Private means that you can’t access that queue directly. Calling dispatch_sync
or dispatch_async on that queue is against the API. The only way to interact with
a private queue context is through -performBlock: and -performBlockAndWait:.

This difference also means that any interaction with the private queue context
must be inside a -performBlock: or -performBlockAndWait: call. The three exceptions
to that rule are -initWithConcurrencyType:, -setParentContext:, and -setPersistentStoreCoor-
dinator:. Any other interaction with a private queue context must be wrapped
in a block.

As with a main queue context, any objects created or retrieved from a private
queue context can only be accessed on that private queue. If you attempt to
access those objects outside the code block, then you’re violating the thread
constraint rules of Core Data and will run into data integrity issues.

Interqueue Communication
Since objects created with or retrieved from a context can only be accessed
on the queue associated with that context, the challenge becomes passing
references to those objects between queues. This is arguably the biggest area
where multiple threads with Core Data cause people the most issues.

If a reference to an object must be passed between queues, the best way to
handle that hand-off is via the object’s -objectID property. This property is
designed to be safe to access from multiple queues and is a unique identifier
to the object.

A Note About the NSManagedObjectID

This unique identifier is generally only guaranteed to reference the object for the
current life cycle of the application. While the -objectID can be persisted through various
means, that approach isn’t recommended. There are several external actions that
can void the reference and cause it to no longer function.

• Click HERE to purchase this book now. discuss

Working off the Main Queue • 9

http://pragprog.com/titles/mzcd3
http://forums.pragprog.com/forums/mzcd3

Once you have a reference to the objectID associated with an NSManagedObject,
you can retrieve another reference to that NSManagedObject from another context
through a few methods:

• -objectWithID: will return an object for any objectID passed to it. The danger
with this method is that it’s guaranteed to return an object, even if it has
to return an empty shell pointing to a nonexisting object. This can happen
if an objectID is persisted and restored in a later application life cycle.

• -existingObjectWithID: error: is a preferred method to use because it will give
back an object if it exists and will return nil if no object exists for the
objectID. The slight negative with this method is that it can perform I/O if
the object isn’t cached.

• -objectRegisteredForID: is the third option for object retrieval with objectID. This
method will return the object if it’s already registered in the context that
the method is being called against. Generally this method is only useful
if you already know that the object has previously been fetched in the
context.

In addition to object hand-off between queues (the passing of an object refer-
ence from one queue to another), there’s the handling of changes performed
on a queue. By default, one context won’t notify another context if an object
has been changed. It’s the responsibility of the developer to notify the other
context of any changes. This is handled through the notification system.

Every time -save: is called against an NSManagedObjectContext, that context will
broadcast a few notifications. The one that’s useful for cross-context notifica-
tions is NSManagedObjectContextDidSaveNotification. That notification is fired once
the save has completed successfully, and the notification object that’s passed
along includes all of the objects that were a part of the save.

If you have two contexts that you wish to keep in sync with each other, you
can subscribe to this notification and then instruct the other context to con-
sume the notification. For example, imagine that in your data controller you
have two contexts—contextA and contextB—and you wish to keep them in
sync. Once those contexts have been initialized, you can then subscribe to
their notifications:

NSNotificationCenter *center = [NSNotificationCenter defaultCenter];
[center addObserver:self

selector:@selector(contextASave:)
forKey:NSManagedObjectContextDidSaveNotification
object:contextA];

[center addObserver:self
selector:@selector(contextBSave:)

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/mzcd3
http://forums.pragprog.com/forums/mzcd3

forKey:NSManagedObjectContextDidSaveNotification
object:contextB];

In general you want notification observations to be as narrowly focused as
possible. Although you could pass nil to the object: parameter, there would be
no guarantee of who was broadcasting the notification, and you’d then need
to filter inside the receiving method. By defining what objects we’re willing to
accept notifications from, we don’t need to write defensive code in the receiving
method and as a result we keep the receiving methods cleaner.

Once you see this notification, you can then consume it:

- (void)contextASave:(NSNotification*)notification
{

[self.contextB performBlock:^{
[self.contextB mergeChangesFromContextDidSaveNotification:notification];
}];

}

- (void)contextBSave:(NSNotification*)notification
{

[self.contextA performBlock:^{
[self.contextA mergeChangesFromContextDidSaveNotification:notification];
}];

}

With this implementation, every time contextA is saved, contextB will be notified
and every time contextB is saved, contextA will be notified. Note that these
-mergeChangesFromContextDidSaveNotification: calls should be wrapped in a -performBlock:
to guarantee that they’re being processed on the proper queue.

It should be noted that while the -mergeChangesFromContextDidSaveNotification: is
being consumed, the context is also notifying any of its observers that changes
are taking place. This means that there can be side effects to this call.

For example, if contextA has an NSFetchedResultsController associated with it and
that NSFetchedResultsController has some expensive cell drawing associated with
it, we can expect to see a performance hotspot while consuming notifications.
The reason for that is that the processing of these notifications isn’t threaded
and the call to -mergeChangesFromContextDidSaveNotification: won’t return until all of
the cells associated with that NSFetchedResultsController have completed their
processing. Worse, since NSFetchedResultsController and the associated cells are
on the main queue, the entire application’s user interface is effectively halted
while these changes are being processed. This can result in some surprising
user interface delays. The best way to avoid these types of performance issues
is to keep the cells from taking too long to draw or to break the save notifica-
tion up into smaller units that can be processed faster.

• Click HERE to purchase this book now. discuss

Interqueue Communication • 11

http://pragprog.com/titles/mzcd3
http://forums.pragprog.com/forums/mzcd3

