
Extracted from:

Rails for PHP Developers

This PDF file contains pages extracted from Rails for PHP Developers, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2008The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Chapter 4

Modeling the Domain
Now that we have seen some high-level differences between PHP and

Rails in Part I, it’s time to put our experiences into action and get

hands-on by building a Rails application. In this part, we’ll build a

Rails app from start to finish; along the way we will see in context how

building an application in Rails is different from how we’d go about the

task using PHP.

We’ll offer an imaginary scenario here of a typical application devel-

opment situation. Our friend Joe has called us with a plea. Joe is an

experienced PHP programmer but has heard enough buzz about Rails

to finally pique his interest. He has started a new Rails user group in

his area but just doesn’t have the time to create a decent website for it.

He wants this group to be a success, and he knows that a website with

only the date and location of meetings just won’t cut it. He has asked

for our help in creating an application to help plan and organize the

group meetings. Since Joe is a good friend of ours, we’ll help him build

a killer app for his group.

The application we build will cover many of the features that Rails offers

and will help us get a good idea of how to build a typical application

using Rails. Creating a user group site will be a great introduction to

hands-on coding with Rails because it contains enough objects to exer-

cise the use of various ActiveRecord methods and associations. Giving

Joe the ability to manage the application’s data will require us to build

a simple authentication system. Finally, all of this will need to be nicely

wrapped up in a presentable public interface. When the application is

finished, you should have a solid understanding of how Rails code is

organized and have a good grasp on the practical uses of the various

Rails components. Meanwhile, we’ll continue to relate these develop-

ment practices to those typically used in PHP.

DEFINING REQUIREMENTS 100

Figure 4.1: Requirements and features

To follow along as we build the application, you’ll probably want to

download the code examples for this application. The example source

code is available online.1

4.1 Defining Requirements

We’ll start the same way we might for any application, whether it be PHP

or otherwise. We need to figure out the goals we want to accomplish and

how our application can help us achieve them. Joe is as opinionated as

any client and comes up with a solid list of requirements, as shown in

Figure 4.1. We’ve taken this a little further, and we’ve assigned a feature

to each of his requirements.

Our next step is to create some simple mock-ups of how the application

might look. The interface needs to manage meetings, presentations,

and users in our application. Joe tells us that he wants the meetings

to include a date, a location, and a short description. He also wants

to be able to add presentations to each meeting along with the person

presenting.

1. http://www.pragprog.com/titles/ndphpr/source_code

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ndphpr/source_code
http://www.pragprog.com/titles/ndphpr

DEFINING REQUIREMENTS 101

Figure 4.2: Meetings page flow

Let’s first concentrate on how we will need to manage these resources,

and then we can begin coding them. To map out how we want this to

work, we sit down with Joe to create some page flow diagrams. The

drawing in Figure 4.2 shows a series of pages representing a typi-

cal web application. This includes the display of our meetings along

with the ability to add, edit, and delete meetings and their associated

presentations.

Our member pages (shown in Figure 4.3, on the next page) are much

simpler, consisting of the ability to view and change user profiles. These

page flow diagrams should provide us with enough material to start

writing code.

At this point, we have a fair idea about how the application will look.

If we were building this application in PHP, it would be tempting to

simply make a PHP file for each one of these pages. First, we’d spend a

bit of time working out the directory structure of our little application,

figure out how to connect the PHP files, and probably gather up our

favorite libraries from PEAR and other repositories to do tasks such as

form handling. If we had chosen some PHP framework, we’d have fewer

decisions, but we’d also have to start with the huge decision of which

of the dozens of PHP frameworks to choose.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ndphpr

DEFINING REQUIREMENTS 102

Figure 4.3: Users page flow

We could then dip into the home page and start fleshing it out in real

PHP code and have a nonfunctioning mock-up of the home page to

show Joe a couple of hours later. Joe would probably be impressed we

threw it together so quickly. Once that was out of the way, we could

start building the other pages and some code to deal with the database.

This isn’t PHP, though; it’s Rails. One of the big wins of adopting Rails

is that it frees your mind of almost all the up-front decisions such as

where to put things or what libraries to use. For our application, we’ll do

it “the Rails way” and follow whatever methods and tools that Rails has

given us to use. By making this conscious decision to worry less about

the innards of our application, we can simply concentrate on solving

Joe’s problems and trust that Rails will have the facilities available to

let us do that efficiently.

We called this chapter Modeling the Domain instead of Building the Web-

site because a Rails application has a different focus and workflow than

a usual PHP website. Where plain PHP lets us start any place we’d like

and build whatever we’d like, Rails has a strongly defined workflow for

us to follow. That workflow starts by making us examine our problem

domain—Joe’s user group meetings—and modeling the data and inter-

actions around that.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ndphpr

USING THE DATABASE 103

Figure 4.4: Modeling the application data

Through our interviews with Joe and creating these page flow diagrams,

we should be able to identify the basic data that our application is deal-

ing with and determine what our domain model will look like. Looking

through our diagrams, let’s create a list of the data we’ll need to rep-

resent in our application. It seems right now that we have three sets

of data to represent the resources in our application. If we take a look

at Figure 4.4, we see that each meeting needs an association with one

or more presentations, and each presentation will be associated with

a user. Before we actually model this data into Ruby classes in our

application, it’s important to learn a little more about Rails’ opinion of

databases.

4.2 Using the Database

Rails rejects the idea of putting business logic in the database in the

form of in-database constraints, referential integrity, or stored proce-

dures. While the database is seen as a way to store relational data,

all business logic for that data belongs in the domain model of our

application.

If you’ve primarily worked with MySQL in the past, this is a pretty stan-

dard approach. Although MySQL supports many these features, they

are not terribly commonplace in PHP applications that use MySQL.

If you’re accustomed to using things such as referential integrity and

stored procedures in your databases, this approach may seem ignorant

or controversial at the very least. There have been many discussions

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ndphpr

USING THE DATABASE 104

about this topic in the past, and Rails’ rejection of these concepts is

not likely to change. Rails focuses on using the database as an “appli-

cation database” and not as an “integration database.” It expects your

application to be the single point of interaction with the database.

Referential Integrity

Referential integrity in the form of database-defined foreign keys is a

hot topic. There are still many developers in the Ruby community who

think this is an oversight and that these constraints should have bet-

ter native support in Rails. One of the great aspects of Rails is the

plug-in environment that allows us to disagree with the Rails core by

simply installing a plug-in to add the features we want. Although using

database foreign keys is unconventional and discouraged in a typical

Rails application, there is a plug-in to help make them less painful to

use; it’s available on the Red Hill Consulting website.2

You can find more information about installing Rails plug-ins within

your application in Section 13.13, Rails Plug-Ins, on page 398.

Using a Single Primary Key

Another intensely debated opinion in Rails is the rejection of composite

keys in favor of all tables using a single primary key named id. The

core team believes the cost of supporting composite keys outweighs the

benefits. The cost in this case is the immense and ugly increase in the

complexity of the Rails code. The ripple effect of supporting composite

keys would have too many implications in the simplicity and beauty of

Rails code.

Another reason is that there is usually not a tangible benefit to using

composite keys over a single unique key. This is even truer when we’re

using a simplified Rails syntax for performing much of our database

interactions. Like support for foreign key constraints, there is a Rails

plug-in to add composite key support if your application requires them.

The composite keys plug-in was written by Dr. Nic Williams; you can

find it in RubyForge.3

Stored Procedures

Stored procedures are another database feature that is not recom-

mended in Rails applications. Rails is attached to the idea of having a

2. http://www.redhillonrails.org/

3. http://compositekeys.rubyforge.org/

CLICK HERE to purchase this book now.

http://www.redhillonrails.org/
http://compositekeys.rubyforge.org/
http://www.pragprog.com/titles/ndphpr

USING THE DATABASE 105

single layer of domain logic and complexity and having that logic written

in Ruby. The typical need for stored procedures is in heavy “integration

database–style” environments where multiple applications and people

need to interact with a single database. Rails favors using web services

to talk to the integration database through the Rails application itself.

Avoiding stored procedures generally makes it easier to keep revision

history on your domain logic and makes application code easier to unit

test. We realize that not all organizations have a choice of avoiding

stored procedures, especially in an Oracle or SQL Server environment.

There is a page that further details working with stored procedures on

the Rails wiki.4

Model and Database Naming Conventions

Coming from PHP, we know that different developers have vastly differ-

ent PHP coding styles. Some developers like to use CamelCase names

like getFoo(), while others prefer underscore names like get_foo(). PHP

itself is a big mix of different styles, so it provides little guidance on how

our code should look. Ruby, on the other hand, provides a solid foun-

dation of standards. Features of the Ruby language even help enforce

these standards. As a result, most Ruby code looks quite similar. This

is great for us because it keeps code readable, and mixing code from

different sources doesn’t end up looking like a hodgepodge of different

coding styles.

In every way, Rails is an extension of Ruby. Although Ruby provides

guidance for how to name our classes and methods, Rails takes this

further and even gives us conventions for naming database tables and

columns. In PHP, there are no such rules, and many developers like it

this way. This may require a little shift in thinking.

As we said earlier, Rails is largely about removing the burden of deci-

sion about how to structure all the little details of our applications. This

allows us to focus more on our application itself and less on its gritty

implementation details. By following the Rails conventions for naming

things in the database, Rails will implicitly connect the database tables

to their corresponding model objects without us needing to do any con-

figuration to map them together. These conventions also help keep Rails

applications easily readable.

4. http://wiki.rubyonrails.org/rails/pages/StoredProcedures

CLICK HERE to purchase this book now.

http://wiki.rubyonrails.org/rails/pages/StoredProcedures
http://www.pragprog.com/titles/ndphpr

CREATING THE APPLICATION 106

Figure 4.5: Model naming conventions

While Ruby’s well-defined conventions keep classes and methods in

check, Rails’ conventions keep application structure in check. This is

a big help for application maintenance as well. If the next developer

who maintains the application understands Rails and our application

is built with all the Rails standards, then that developer will come in

already having some understanding of the application.

By taking a look at Figure 4.5, we can see that database tables are

expected to be named using a plural form of whatever we are storing,

formatted with underscores. Each database table in our application will

have an associated model, which is named using the singular form of

the table name formatted using CamelCase. Finally, the filename will

be based on the name of the model but in an underscore format.

This might seem like quite a few rules to follow when creating files

and classes, but Rails does most of the work for you. When you run

the generate script, Rails will automatically create the correct files and

filenames according to conventions.

4.3 Creating the Application

Before we create our models, we need to set up a new Rails application.

This means creating a new Rails project along with the MySQL database

needed for development. We’ll name this application user_group, and

once again use MySQL for our database.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ndphpr

CREATING THE APPLICATION 107

Joe Asks. . .

What’s This “rake” Command?

We briefly mentioned Rake in Section 1.2, The Components of

Rails, on page 21, and we’ll use this tool often as part of our
development process. Rake is “Ruby Make,” a great system for
gluing together all of your Ruby command-line tasks. Rails uses
Rake extensively and even supports making your own special
automation tasks!

There is also a somewhat similar system for PHP called Phing,
but it has had limited adoption by PHP developers. By contrast,
almost all Rails developers use and love Rake.

derek> cd work

work> rails -d mysql user_group

The development database for this project will be named, by Rails con-

ventions, user_group_development. We’ll use a Ruby tool called Rake to

create this database for our application. Navigate to your application’s

root directory to run db:create.

work> cd user_group

user_group> rake db:create

(in /Users/derek/work/user_group)

If we want to change the username and password used to connect to

this database, we need to edit our config/database.yml configuration, as

discussed in Section 1.6, Configuring the Database, on page 29. Other

than that, we should now have a new Rails application ready to go. Let’s

start WEBrick to get the application running on localhost.

user_group> ruby script/server

At this point in a typical PHP application, we would most likely cre-

ate a relational database schema using a tool such as phpMyAdmin

or even straight SQL create statements. Although we created our table

with plain old SQL for our newsletter application in Chapter 1, Getting

Started with Rails, on page 20, we’ll take a different approach this time.

Rails migrations are a higher-level way of creating and modifying data-

base tables using Ruby code instead of SQL. In this application, we’ll

create and modify all of our tables using migrations. A migration file

will be created automatically for each model we generate.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ndphpr

GENERATING THE FIRST MODEL 108

4.4 Generating the First Model

We’ll start constructing our application by creating a model to represent

a user in our application. Our conventions state that for a table named

users, we’ll create a model named User. Let’s use script/generate to create

this.

user_group> ruby script/generate model User

exists app/models/

exists test/unit/

exists test/fixtures/

create app/models/user.rb

create test/unit/user_test.rb

create test/fixtures/users.yml

create db/migrate

create db/migrate/001_create_users.rb

We can now see all our naming conventions fall into place. The gen-

erate script has already created our model and test file. It has even

created the migration file we’ll be using to create the database table.

If we open the model file app/model/user.rb, we can see that the class

has correctly been named User. Likewise, opening the migration file

db/migrate/001_create_users.rb shows us that we’ll execute create_table

:users, which is the plural underscore version of our model name.

You might be wondering how Rails determines the plural version of a

word. Rails includes an inflection component to convert words to their

plural or singular forms. To see this in action, we’ll use another utility

script that comes with Rails. This script starts an IRB session but also

loads our Rails environment and code. This lets us interactively play

with our application through the command line.

user_group> ruby script/console

Loading development environment

>> 'user'.pluralize

=> "users"

>> 'users'.singularize

=> "user"

We can see that the pluralize and singularize methods are added to all

strings and that our user string is converting as expected. Most of the

time, Rails’ default inflection engine will handle our models as expected.

Rails will successfully convert most irregular words as well but doesn’t

catch absolutely everything. Let’s try something a little less expected.

>> 'bacon'.pluralize

=> "bacons"

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ndphpr

GENERATING THE FIRST MODEL 109

Joe Asks. . .

Is Pluralization Worth the Hassle?

There have been many heated discussions over the pluraliza-
tion conventions in Rails. The reason pluralization was added to
Rails was to make the language more natural when referring
to data and classes. A database table contains plural users,
while a User class represents a single user. This follows in line with
the principle of least surprise. It is possible to turn off pluraliza-
tion by adding the following to your configuration block in con-

fig/environment.rb.

config.active_record.pluralize_table_names = false

This option is most useful for legacy database schemas that
can’t be changed to use Rails conventions. We highly suggest
you stick with the conventional approach for all new projects.

If we were building a meaty application that needed a bacon table, we

would want to refer to our bacon in plural as simply bacon. Rails seems

to be adding a trailing s where it isn’t warranted. We can fix this by

adding custom inflection rules to an initializer that runs as Rails starts.

Open the file config/initializes/inflections.rb, and at the bottom we’ll see

some sample code on how to modify inflections. Below the sample code,

we’ll add bacon as an uncountable word similar to fish and sheep, since

the word remains the same in both singular and plural form.

Inflector.inflections do |inflect|

inflect.uncountable %w(fish sheep bacon)

end

Now if we exit and reload our interactive console to reinitialize the Rails

environment, the pluralization of bacon will behave as expected.

>> exit

user_group> ruby script/console

Loading development environment

>> 'bacon'.pluralize

=> "bacon"

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ndphpr

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Rails for PHP Developers Home Page

http://pragprog.com/titles/ndphpr

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/ndphpr.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragprog.com/catalog

Customer Service: orders@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

http://pragprog.com/titles/ndphpr
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/ndphpr
www.pragprog.com/catalog

	Contents
	Acknowledgments
	Preface
	What Rails Offers
	Who Should Read This Book
	Resources
	PHP and Rails: A Personal View
	About the Code Examples
	About the Environment Used
	Version Requirements
	How to Read This Book

	From PHP to Rails
	Getting Started with Rails
	Rails as an Extension of Ruby
	The Components of Rails
	Opinionated Software
	The MVC Pattern and Rails
	Installing Ruby and Rails
	Creating a Rails App
	Chapter Review
	Exercises

	Beginning Ruby Code
	Seeing Ruby as a General-Purpose Language
	Interacting with Ruby
	Objectifying Everything
	Accepting Ruby's Object World
	Assigning to Variables
	Writing Methods and Passing Parameters
	Controlling Program Flow
	Handling Errors
	Understanding Blocks
	Chapter Review
	Exercises

	Embracing the Ruby Philosophy
	Thinking in Objects
	Understanding Attributes
	Method Visibility
	Understanding Typing
	Implementing Interfaces with Mixins
	Organizing Code with Namespaces
	Overriding Operators
	Reopening Classes
	Chapter Review
	Exercises

	Building a Rails Application
	Modeling the Domain
	Defining Requirements
	Using the Database
	Creating the Application
	Generating the First Model
	Building Database Tables
	Employing ActiveRecord
	Chapter Review
	Exercises

	Working with Controllers and Views
	Identifying Resources
	Creating Controllers
	Routing Requests
	Retrieving Meeting Data
	Viewing Meetings
	Adding Links
	Creating New Meetings
	Redirection and Flash Data
	Administrating Meetings
	Separating Public Files
	Adding a Layout
	Chapter Review
	Exercises

	Validating and Testing Models
	Validating Model Data
	Using Rails Environments
	Testing Our Models
	Chapter Review
	Exercises

	Authenticating Users
	Migrating to a More Secure User
	User Registration
	Viewing and Editing Users
	Restoring Sessions
	Logging In
	Chapter Review
	Exercises

	Defining Associations
	Connecting Presentations
	Testing Associations
	Integrating Presentations into Meetings
	Routing Presentations
	The Presentation Controller
	Spring Cleaning
	Chapter Review
	Exercises

	Preparing to Launch
	Adding the Home Page
	Securing Our Actions
	Protecting from Mass Assignment
	Caching the Pages
	Chapter Review
	Exercises

	Deploying the Application
	Choosing a Host
	The Production Environment
	Preparing Our Application
	Preparing Our Deployment Server
	Launching the Application
	Enhancing Performance
	Scaling Your Application
	Chapter Review
	Exercises

	PHP to Ruby at a Glance
	PHP to Ruby Basics Reference
	Basic Syntax
	Basic Data Types
	Variables
	Constants
	Expressions
	Operators
	Control Structures

	PHP to Ruby Advanced Reference
	Blocks
	Functions
	Classes and Objects
	Exceptions
	References
	External Libraries and Packages
	Documenting Code

	PHP to Rails Reference
	Templates
	$_GET/$_POST
	$_FILES
	$_SERVER
	Cookies
	Sessions
	Headers and Redirection
	Security
	Debugging
	Accessing the Database
	Email
	Testing Rails Code
	Rails Plug-Ins

	*-.5Bibliography

	Index
	Symbols
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	Y
	Z

