
Extracted from:

Rails Test Prescriptions
Keeping Your Application Healthy

This PDF file contains pages extracted from Rails Test Prescriptions, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Chapter 3

Writing Your First Tests
You have a problem. You are the team leader for a development team

that is distributed across multiple locations. As an agile development

team, your project has a daily stand-up meeting, sometimes called a

scrum, where everybody briefly describes what they did yesterday, what

they plan on doing today, and if anything is blocking them from getting

their work done.

However, since your team is geographically distributed, you need to do

these scrums via email. That’s not the worst thing ever, but it does lead

to annoying email threads, and I think we can all do better with a little

web application magic. Let’s create an application called Huddle, which

will support entering and viewing these daily status messages.

Since you are a Rails developer who wants to use test-driven methods,

the first thing you should ask is, “What do I test?” Test-driven devel-

opers start an application by writing tests. In that spirit, we’re going

to initiate our tour of Rails testing by writing lots of tests. Specifically,

we’re going to walk through the first few test-driven feature cycles of

the Huddle application to give you the feel of Test-Driven Development

(TDD) using Rails.

We’ll use a hands-on approach and walk through the specifics of how to

write your first tests. We’ll talk about how the practice of working “test

first” improves development, but more importantly, we’ll show what

working in a test-driven style looks like. This chapter uses the test-

ing tools that are available in core Rails and will be limited to common

Rails tasks such as creating and submitting a web form. At the end of

this chapter, you should have a good sense of how TDD development

CHAPTER 3. WRITING YOUR FIRST TESTS 45

A Word About Best Practices

There’s a tension in this section between making the introduc-
tion to Rails testing as simple and clear as possible and present-
ing the tests using what I would consider to be best practices.
In particular, many of my regular testing practices depend on
third-party tools that we’re not going to cover in this walk-
through.

In this chapter, I decided to focus on making testing as easy as
possible to explain while still using good coding practice, and I
included some discussion of where improvements might come.
We’ll go over coding style and practice considerations again
later in the book.

works in Rails, and you’ll be ready to explore the third-party tools and

more detailed topics in the rest of the book.

Appendix A, on page 323, contains the steps for creating the skeleton

application we’re starting with—including the initial setup, creation of

Rails scaffolds, addition of Devise for user authentication, and other

things that are necessary to the application but beside the point for our

tutorial. If you’d like to start at the same place, the code samples for

this chapter are available for download at http://www.pragprog.com/titles/

nrtest/source_code. The code for this application was written and tested

against Rails 3.0.1

We’re going to do this in a reasonably strict test-driven style, meaning

no new logic will be added to the application except in response to a

failing test. We’ll be a little more lenient with view code. We’re assum-

ing a basic understanding of standard Rails concepts; in other words,

you don’t need to be told what a controller is. For the moment, we’re

also going to limit ourselves to test tools provided by core Rails. Later

in the book, we’ll spend a lot of time covering third-party tools, espe-

cially in Chapter 11, Write Cleaner Tests with Shoulda and Contexts,

on page 171 and Chapter 12, RSpec, on page 188. But in the name of

keeping it simple, we’ll start with vanilla core Rails.

1. Significant differences with Rails 2.3.x will be noted.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/nrtest/source_code
http://www.pragprog.com/titles/nrtest/source_code
http://www.pragprog.com/titles/nrtest

THE FIRST TEST -FIRST 46

3.1 The First Test-First

The first question to ask is, “What do I test?” The answer comes from

your requirements. Without some sense of what your program should

be doing, it’s hard to write tests that describe that behavior in code.

The form and formality of your requirements will depend on the needs

of your project. In this case, you are your own client, and it’s kind of

a small project, and we don’t have space in this book for military-level

precision. So, the informal list of the first three stories in the application

looks something like this:

• A user is part of a project. A user can enter his scrum status for

that project.

• For the purpose of adding a testable constraint, let’s say the user’s

status report has yesterday’s status and today’s expected work,

and the user must include text in at least one of these items.

• Members of the project can see a timeline of status reports. This

one will get covered in Chapter 4, TDD, Rails Style, on page 63.

Over the rest of this tutorial, we’ll go after these stories one by one.

Any time we add or change the logic of the application, we’ll write a

test. The exact starting point of the first test is not important (although

it’s helpful to have at least some sense of where you are going); you

can start with any requirement or feature in the program that can be

objectively specified.

Our starting point for Huddle is the need to have a status report that

is created as part of a project. The report should have all its values,

including the date, set correctly. Because I think the code for this fea-

ture might be in the StatusReportsController, I’m going to put the test for

this feature in test/functional/status_reports_controller_test.rb.

Line 1 test "creation of status report with data" do

- assert_difference('StatusReport.count', 1) do

- post :create, :status_report => {
- :project_id => projects(:one).to_param,
5 :user_id => users(:one).to_param,
- :yesterday => "I did stuff",
- :today => "I'll do stuff"}
- end

- actual = assigns(:status_report)
10 assert_equal(projects(:one).id, actual.project.id)

- assert_equal(users(:one).id, actual.user.id)
- assert_equal(Date.today.to_s(:db), actual.status_date.to_s(:db))
- assert_redirected_to status_report_path(actual)
- end

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/nrtest

THE FIRST TEST -FIRST 47

Let’s walk through this test in detail.

Line 3 simulates a post call to the create action of the StatusReportsCon-

troller. The second argument to this call simulates the URL parameters

of the call—effectively, you are setting up the params hash that will be

used in the action. As part of that hash, the call references users(:one),

which is a fixture, or set of known sample data that can be used in test-

ing. This particular fixture set was created in Appendix A, on page 323,

and it defines the data object accessed as users(:one). Section 2.7, More

Info: Getting Data into the Test, on page 40 has more detail on fixtures.

Going back to the test itself, the block that starts in line 2 and ends in

line 8 uses the assert_difference() method to assert that there is one more

StatusReport object in the database at the end of the block than at the

beginning. More plainly, the method is asserting that a new StatusReport

instance has been created.

Line 9 uses the Rails test framework assigns() method, allowing access

to instance variables set in the controller being tested—in this case,

the controller variable @status_report, which should be the newly created

instance. You don’t need the @ symbol in the argument to assigns().

Starting with line 10, there are three lines asserting that a project, user,

and status date are added to the newly created object.2 Line 13 asserts

that the result of the controller call is a redirect to the show page of the

newly created StatusReport.

Although people will certainly quibble with the style and structure of

this test, it is a basic, straightforward test of the desired functionality.

This is the maximum amount of complexity that I’m comfortable having

in a single test. In some cases, the amount of data or validation needed

in a test suggests the need to refactor some of the complexity into setup

methods or custom assertion methods.

Rather than start with a controller test, I could start by testing the

model behavior. The model test is probably closer to the code that will

be written, since good Rails style places complexity in the model. How-

ever, I sometimes find that it is easier to specify the desired result when

I start testing via the controller. Another option would be to start with

an integration or Cucumber-based acceptance test (described in more

detail in Chapter 15, Acceptance Testing with Cucumber, on page 237).

2. If this test is run at just the right moment before midnight, 12 will fail because the

date has changed during the running of the code. Section 6.11, Managing Date and Time

Data, on page 97 discusses working around this problem in more detail.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/nrtest

THE FIRST TEST -FIRST 48

We’re testing status_date because we know new code will be needed to

add that attribute to the object, and we’re testing the existence of the

project and user objects because the requirements need relationships

to be set up between the models. We’re not testing the today and yes-

terday texts because that’s part of core ActiveRecord—we could test it,

but it would be redundant. Redundancy is not always bad in testing,

but right now it’s unnecessary.

I often use a testing style that limits each individual test to a single

assertion and might therefore separate this test into four different tests

sharing a common setup. The advantage of this one-assertion-per-test

style is that each assertion is able to pass or fail separately. As written,

the first failure prevents the rest of the tests from running. Although it’s

a good point that assertions should be independent, in this case it’s eas-

ier to follow the intent of the test when similar assertions are grouped.

Also, single assertion tests are easier to write with a little help from

third-party tools. In Section 11.7, Single-Line Test Tools, on page 185,

we’ll see some tools that make it easier to write single-assertion tests.

When we run the tests, we get an error. The stack trace for the error

looks like this:

1) Error:

test_creation_of_status_report_with_data(StatusReportsControllerTest):

ArgumentError: wrong number of arguments (1 for 0)

/test/functional/status_reports_controller_test.rb:58:in `to_s'

/test/functional/status_reports_controller_test.rb:58:in

`test_creation_of_status_report_with_data'

The line with the error is assert_equal(Date.today.to_s(:db), actual.status_

date.to_s(:db)), and strictly speaking, the error message says that to_s,

which converts the object to a string, is being called with the wrong

number of arguments: (1 for 0), which means the method was called

with one argument but expected zero.

This error message is technically true but misleading. The real error

is that actual.status_date is nil and not Date.today. That error manifests

itself as a “wrong number of arguments” because the test converts both

dates to strings. The method to_s() takes no arguments for most classes,

but Rails ActiveSupport overrides the method for Date with an optional

format argument. Since our test results in a nil value instead of a Date,

the extra argument causes an error.3

3. Why convert to strings, you ask? Because you get much more readable error messages

if the values are both strings.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/nrtest

THE FIRST REFACTOR 49

Also, notice that the user and project parts of the test already pass. This

is a Rails feature. With the use of user:references in the script/generate

command line (the exact setup commands are listed in Appendix A, on

page 323), Rails automatically adds the belongs_to association to the

StatusReport class. As we’ll see later, it doesn’t add the relationship in

the other direction.

Now let’s make the test pass. The classic process says to do the sim-

plest thing that could possibly work. It’s a good idea to just make the

immediate error or failure go away, even if we suspect there are further

errors waiting in the test. Doing so keeps the test/code cycle short and

prevents the code from getting unnecessarily complex.

To get past the test failure, add a line toward the beginning of the

create() method in app/controllers/status_reports_controller.rb so that the

method starts like so:

def create

@status_report = StatusReport.new(params[:status_report])

@status_report.status_date = Date.today # ==> the new line

the rest of the method as before

end

3.2 The First Refactor

We fixed the immediate problem, and the test passes. We now enter

the refactoring step. There isn’t much here to refactor, but we have one

detail we can tweak: it’s better not to set the status_date in the controller.

Good Rails practice moves complexity from controllers to models where

possible. For one thing, placing code in the models tends to decrease

duplication where functionality is used by multiple controller actions.

For another, code in the model is easier to test.

Ordinarily, we would not be writing tests during refactoring, just using

existing tests to verify that behavior hasn’t changed. However, when

moving code from one layer, the controller, to another, the model, it

helps to create tests in the new class. Especially here, because our

new behavior will be slightly different, we want the status_date to be

automatically set whenever the report is saved.

The unit test goes in test/unit/status_report_test.rb:

Line 1 test "saving a status report saves the status date" do

2 actual = StatusReport.new
3 actual.save
4 assert_equal(Date.today.to_s, actual.status_date.to_s)
5 end

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/nrtest

THE FIRST REFACTOR 50

The test fails. As referenced in a previous footnote, in line 4 we’re com-

paring literal string objects rather than the dates.

To pass the test, we add a before_save() callback to the StatusReport

class:

class StatusReport < ActiveRecord::Base

belongs_to :project

belongs_to :user

before_save :set_status_date

def set_status_date

self.status_date = Date.today

end

end

Now the test passes. But there’s one more thing to worry about—if the

status_date has already been set before the report is saved, the original

date should be used. As the code stands now, the status_date will change

whenever the model is edited. In the TDD process, we force ourselves

to make that code change by exposing the error with a test. Here’s how,

in test/unit/status_report_test.rb:

Line 1 test "saving a status report that has a date doesn't override" do

2 actual = StatusReport.new(:status_date => 10.days.ago.to_date)
3 actual.save
4 actual.reload
5 assert_equal(10.days.ago.to_date.to_s, actual.status_date.to_s)
6 end

The to_date() methods in lines 2 and 5 are there to convert between

10.days.ago, which is a Ruby DateTime object, and the status_date, which

is a Ruby Date object. Without that conversion, we will get an error

because the string formats won’t match in line 5.

The reload() call in line 4 forces ActiveRecord to re-retrieve the record

from the database. ActiveRecord does not prevent a database record

from having multiple live objects pointing to it. In this particular case,

the controller creates a new instance from the database and saves that

instance, without touching the actual variable created for the test. As a

result, the database version has typecast the status_date to a Date when

saving, but the live version in memory hasn’t gotten that change.

In general, it’s a good idea to reload any object being tested and saved.

This is most commonly an issue in controller tests, where you might

create an object during setup and then another object is created during

the controller action that is backed by the same database record. In

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/nrtest

MORE VALIDATIONS 51

that case, the object you are holding on to in the test does not reflect

changes made to the database during the controller action, leading to

hours of fun as you try to figure out why your test is failing. Reloading

will allow the object in your tests to see changes to the database made

after the object was created.

One way to make the new test pass is this very slight change to the

model:

Download huddle3/app/models/status_report.rb

def set_status_date

self.status_date = Date.today if status_date.nil?

end

And now the scary part: removing the status-changing line from the

controller and making sure that the tests pass again. This involves

removing the line of code that we just added to the controller a cou-

ple of seconds ago.

It just takes a second to remove the line, and then we can rerun rake to

verify that the tests still pass.

3.3 More Validations

While we’re looking at the status report model, there is another one of

our original three requirements we can cover, namely, the requirement

that a user must enter text in at least one of the yesterday and today

boxes. Back in test/unit/status_report_test.rb:

Download huddle3/test/unit/status_report_test.rb

test "a report with both blank is not valid" do

actual = StatusReport.new(:today => "", :yesterday => "")

assert !actual.valid?

end

The simplest way to pass this test is by placing the following line of

code in app/models/status_report.rb:

validates_presence_of :yesterday, :today

That’s great! With that line of code in place, everything will be swell.

Nothing can go wrong. (Cue ominous music.) Let’s run rake:

1) Failure:

test_saving_a_status_report_saves_the_status_date(StatusReportTest)

[/test/unit/status_report_test.rb:9]:

<"2009-08-26"> expected but was

<"">.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/nrtest/code/huddle3/app/models/status_report.rb
http://media.pragprog.com/titles/nrtest/code/huddle3/test/unit/status_report_test.rb
http://www.pragprog.com/titles/nrtest

MORE VALIDATIONS 52

2) Error:

test_saving_with_a_date_doesn't_override(StatusReportTest):

ActiveRecord::RecordNotFound: Couldn't find StatusReport without an ID

/test/unit/status_report_test.rb:17:in

`test_saving_with_a_date_doesn't_override'

What? Well, you’ve probably figured it out, but adding the validation

causes problems in other tests.4 Specifically, status reports that were

created by other tests without either text field being set are now fail-

ing their saves because they are invalid. This is admittedly annoying,

because it’s not really a regression in the code: the actual code in the

browser probably still works fine. It’s more that the shifting definition

of what makes a valid StatusReport is now tripping up older tests that

used insufficiently robust data.

Fixing the failing tests is straightforward. To fix the two tests in test/unit/

status_report_test.rb, add the arguments (:today => "t", :yesterday => "y") to

each StatusReport.new() method call, giving the following:

Download huddle3/test/unit/status_report_test.rb

Line 1 test "saving a status report saves the status date" do

- actual = StatusReport.new(:today => "t", :yesterday => "y")
- actual.save
- assert_equal(Date.today.to_s, actual.status_date.to_s)
5 end

-

- test "saving with a date doesn't override" do

- actual = StatusReport.new(:status_date => 10.days.ago.to_date,
- :today => "t", :yesterday => "y")

10 actual.save
- actual.reload
- assert_equal(10.days.ago.to_date.to_s, actual.status_date.to_s)
- end

This puts enough data in the report to make the test pass—we don’t

need to care what the data actually is. For Rails 2.x, a similar change

needs to be made in test/functional/status_reports_controller_test.rb:

Download huddle/test/functional/status_reports_controller_test.rb

test "should create status_report" do

assert_difference('StatusReport.count') do

post :create, :status_report => {:today => "t", :yesterday => "y"}

end

assert_redirected_to status_report_path(assigns(:status_report))

end

4. In Rails 2.x, you also get a test failure in StatusReportTest for the test of the create

action because of a difference in the behavior of the generated test. In Rails 3, that action

is passed default values based on fixture data, so the validation works. In Rails 2, the

generated test passes an empty hash to the controller.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/nrtest/code/huddle3/test/unit/status_report_test.rb
http://media.pragprog.com/titles/nrtest/code/huddle/test/functional/status_reports_controller_test.rb
http://www.pragprog.com/titles/nrtest

MORE VALIDATIONS 53

And now we’re back at all passing. This is, frankly, the kind of thing

that causes people to develop an aversion to testing: sometimes it seems

like a boatload of busywork to have to go back in and change all those

older tests. And, well, it can be. There are a couple of ways you can

minimize the annoyance and keep the benefits of working test-first.

One helpful technique is to keep a very tight loop between writing tests

and writing code and to run the test suite frequently (ideally, we’d run

it constantly using autotest or a similar continuous-test execution tool,

Section 19.3, Using Autotest, on page 311). The tighter the loop and the

fewer lines of code we write in each back-and-forth, the easier it is to

find and track down these structural test problems.

Second, and more specific to these kinds of validation problems, using

some kind of factory tool or common setup method to generate well-

structured default data makes it much easier to keep data in sync with

changing definitions of validity. Much more on that topic in Section 6.4,

Using Factories to Fix Fixtures, on page 88.

Anyway, fixing the older data is a distraction: we have a larger problem.

Remember, we wanted the status to be invalid only if both today and

yesterday were blank. We need to write a couple of follow-up tests to

confirm that we haven’t overshot the mark. The tests go in test/unit/

status_report_test.rb.

Download huddle3/test/unit/status_report_test.rb

test "a report with yesterday blank is valid" do

actual = StatusReport.new(:today => "today", :yesterday => "")

assert actual.valid?

end

test "a report with today blank is valid" do

actual = StatusReport.new(:today => "", :yesterday => "yesterday")

assert actual.valid?

end

Oops.

1) Failure:

test_a_test_with_today_blank_is_valid(StatusReportTest)

[/test/unit/status_report_test.rb:36]:

<false> is not true.

2) Failure:

test_a_test_with_yesterday_blank_is_valid(StatusReportTest)

[/test/unit/status_report_test.rb:31]:

<false> is not true.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/nrtest/code/huddle3/test/unit/status_report_test.rb
http://www.pragprog.com/titles/nrtest

MORE VALIDATIONS 54

At this point, we want to move to a custom validation, because the

validation functions provided by Rails won’t quite get this right for us.

Replace the validation line in app/model/status_report.rb with the follow-

ing call to plain validate() and the associated method:

Download huddle3/app/models/status_report.rb

validate :validate_has_at_least_one_status

def validate_has_at_least_one_status

if today.blank? && yesterday.blank?

errors[:base] << "Must have at least one status set"

end

end

And we’re back to passing.5 This, by the way, is the first line of code

we’ve seen in this chapter that is different for Rails 3 and Rails 2. The

previous is for Rails 3. In Rails 2, the error is added with the method

call errors.add_to_base().

Here are a couple of points on the question of what to test and when:

• The general situation here is very important. Always try to test a

boundary from both sides. If you are testing that an administrator

should see a certain link, you also need to test that a regular user

can’t see it. Your tests will give you an accurate picture of your

application only if they cover the requirement boundaries from

both sides.

• Although we don’t need to test the Rails validation methods as

such, we do need to verify the operational behavior that a model

object in a certain state is invalid. In a strict TDD process, it’s the

test for validity that causes us to add the Rails validation method

in the first place.

• Whether to go back and add a controller test to validate behavior

for invalid objects is an open question. As a matter of course, we

insert a generic test into our controller scaffold using mock objects

to cover the general failure case (shown in detail in Chapter 7,

Using Mock Objects, on page 103), which means we don’t need

to go back and test the controller behavior for each and every

different possible kind of model failure, unless, of course, each

specific failure actually dictates different controller behavior.

5. One early reviewer pointed out that this can, in fact, be done with the core Rails

validations, namely, a pair of validates_presence_of() calls with the if option.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/nrtest/code/huddle3/app/models/status_report.rb
http://www.pragprog.com/titles/nrtest

SECURITY NOW! 55

Now, this may seem like a lot of work because we’ve been going through

every step in excruciating detail. In practice, though, each of these test

cycles is very quick—in the five- to fifteen-minute range for relatively

simple tests like these.

3.4 Security Now!

Let’s take a look at Huddle’s login and security models that use the

Devise gem. Devise has its own set of tests, so we don’t need to write

tests for the basic behavior of login and logout. We do need to write

tests to cover parts of the application-specific security model for who

can see and edit what different things. Let’s say that our authentication

requirements are as follows:

1. Users must be logged in to view or create a status report.

2. Users must always have a current project chosen. Right now, any

user can see and create a status report on any project. Assigning

users to projects may or may not happen later. At the moment, we

don’t care.

3. Users can only edit their own reports. Again, there may or may

not be admin functionality later; we’ll cross that bridge when we

get to it.

To enforce a Devise login globally throughout the app, we need to add

the following inside the ApplicationController. In a slight break from nor-

mal procedure, we’ll implement the forced login in the code first.

Download huddle3/app/controllers/application_controller.rb

before_filter :authenticate_user!

Why not do this test first? It’s because most of the functionality is

already tested by Devise and because the authentication model is

super-basic and application-wide. If and when the login model gets

more complex (if, for example, there were public reports that did not

require a login), we’d start adding some tests.

Despite not adding any new tests, we suddenly have no shortage of

failing tests just from adding the login requirement. Running rake, the

unit tests pass, but the controller tests...well:

15 tests, 0 assertions, 0 failures, 15 errors

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/nrtest/code/huddle3/app/controllers/application_controller.rb
http://www.pragprog.com/titles/nrtest

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Home page for Rails Test Prescriptions

http://pragprog.com/titles/nrtest

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/nrtest.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/nrtest
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/nrtest
www.pragprog.com/catalog

