
Extracted from:

Rails Test Prescriptions
Keeping Your Application Healthy

This PDF file contains pages extracted from Rails Test Prescriptions, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Chapter 1

The Goals of Automated
Developer Testing

1.1 A Testing Fable

Imagine two programmers working on the same task. Both are equally

skilled, charming, and delightful people, motivated to do a high-quality

job as quickly as possible. The task is not trivial but not wildly complex

either; for the sake of discussion, we’ll say it’s behavior based on a new

user registering for a website and entering pertinent information.

The first developer, who we’ll call Ernie,1 says, “This is pretty easy, and

I’ve done it before. I don’t need to write tests.” And in five minutes Ernie

has a working method ready to verify.

Our second developer is, of course, named Bert. Bert says, “I need to

write some tests.”2 Bert starts writing a test, and in five minutes, he

has a solid test of the new feature. Five minutes more, Bert also has a

working method ready to verify. Because this is a fable, we are going to

assume that Ernie is allergic to automated testing, while Bert is simi-

larly averse to manually running against the app in the browser.

At this point, you no doubt expect me to say that even though it has

taken Bert more time to write the method, Bert has written code that

is more likely to be correct, robust, and easy to maintain. That’s true.

1. Because that’s his name.

2. Actually, if Bert is really into Agile, he probably asks, “Who am I going to pair with?”

but that’s an issue for another day.

A TESTING FABLE 16

But I’m also going to say that there’s a good chance Bert will be done

before Ernie.

Observe our programmers a bit further. Ernie has a five-minute lead,

but both people need to verify their work. Ernie needs to test in a

browser; we said the task requires a user to log in. Let’s say it takes

Ernie one minute to set up the task and run the action in his develop-

ment environment. Bert verifies by running the test—that takes about

ten seconds. (Remember, Bert has to run only one test, not the entire

suite.)

Let’s say it takes each developer three tries to get it right. Since running

the test is faster than verifying in the browser, Bert gains a little bit

each try. After verifying the code three times, Bert is only two and half

minutes behind Ernie.3

At this point, with the task complete, both break for lunch (a burrito for

Bert, an egg salad sandwich for Ernie, thanks for asking). After lunch,

they start on the next task, which is a special case of the first task.

Bert has most of his test setup in place, so writing the test only takes

him two minutes. Still, it’s not looking good for Bert, even after another

three rounds trying to get the code right. He’s still a solid two minutes

behind Ernie.

Bear with me one more step, and we’ll get to the punch line. Ernie and

Bert are both conscientious programmers, and they want to clean their

code up with a little refactoring. Now Ernie is in trouble. Each time

he tries the refactoring, he has to spend two minutes verifying both

tasks, but Bert’s test suite still takes only about ten seconds. After

three more tries to get the refactoring right, Bert finishes the whole

thing and checks it in three and a half minutes ahead of Ernie.4

My story is obviously simplified, but let’s talk a moment about what I

didn’t assume. I didn’t assume that the actual time Bert spent on task

was smaller, and I didn’t assume that the tests would help Bert find

errors more easily—although I think that would be true.5 The main

3. In a slight nod to reality, let’s assume that both of them need to verify one last time

in the browser once they think they are done. Since they both need to do this, it’s not an

advantage for either one.

4. Bert then catches his train home and has a pleasant evening. Ernie just misses his

train, gets caught in a sudden rainstorm, and generally has a miserable evening. If only

he had run his tests....

5. Of course, I didn’t assume that Bert would have to track down a broken test in some

other part of the application, either.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/nrtest

WHO ARE YOU? 17

point here is that it’s frequently faster to run multiple verifications of

your code as an automated test than to always check manually. And

that advantage is only going to increase as the code gets more complex.

There are many beneficial side effects of having accurate tests. You’ll

have better-designed code in which you’ll have more confidence. But

the most important benefit is that if you do testing well, you’ll notice

that your work goes faster. You may not see it at first, but at some

point in a well-run test-driven project, you’ll notice fewer bugs and that

the bugs that do exist are easier to find. You’ll notice that it’s easier

to add new features and easier to modify existing ones. As far as I’m

concerned, the only code-quality metric that has any validity is how

easy it is over time to find bugs and add new behavior.

Of course, it doesn’t always work out that way. The tests might have

bugs. Environmental issues may mean things that work in a test envi-

ronment won’t work in a development environment. Code changes will

break tests. Adding tests to already existing code is a pain. Like any

other programming tool, there are a lot of ways to cause yourself pain

with testing.

1.2 Who Are You?

The goal of this book is to show you how to apply a test-driven process

as you build your Rails application. I’ll show you what’s available and

try to give you some idea of what kind of tools are best used in what

circumstances. Still, tools come and tools go, so what I’m really hoping

is that you come away from this book committed to the idea of writing

better code through the small steps of a TDD or BDD process.

There are some things I’m assuming about you.

I’m assuming that you are already comfortable with Ruby and Rails and

that you don’t need this book to explain how to get started creating a

Rails application in and of itself.

I am not assuming you have any particular familiarity with testing

frameworks or testing tools used within Rails. If you do have familiar-

ity, you may find some of the early chapters redundant. However, if you

have tried to use test frameworks but got frustrated and didn’t think

they were effective, I recommend Chapter 3, Writing Your First Tests, on

page 44 and Chapter 4, TDD, Rails Style, on page 63, since they walk

through the TDD process for a small piece of Rails functionality.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/nrtest

THE POWER OF TESTING FIRST 18

Over the course of this book, we’ll go through the tools that are available

for writing tests, and we’ll talk about them with an eye toward making

them useful in building your application. This is Rails, so naturally I

have my own opinions, but all the tools have the same goal: to help you

to write great applications that do great things and still catch the train

home.

1.3 The Power of Testing First

The way to succeed with Test-Driven Development (TDD) is to trust the

process. The classic process goes like this:

1. Create a test. The test should be short and test for one thing in

your code. The result of the test should be deterministic.

2. Make sure the test fails. Verifying the test failure before you write

code helps ensure that the test really does what you expect.

3. Write the simplest code that could possibly make the test pass.

Don’t worry about good code yet. Don’t look ahead. Sometimes,

just write enough code to clear the current error.

4. Refactor. After the test passes. Clean up duplication. Optimize.

This is where design happens, so don’t skip this. Remember to

run the tests at the end to make sure you haven’t changed any

behavior.

Repeat until done. This will, on paper at least, ensure that your code is

always as simple as possible and always is completely covered by tests.

We’ll spend most of the rest of this book talking about the details of

step 1 and how to use Rails tools to write useful tests.

If you use this process, you will find that it changes the structure of the

code you write. The simple fact that you are continually aligning your

code to the tests results in code that is made up of small methods, each

of which does one thing. These methods tend to be loosely coupled and

have minimal side effects.

As it happens, the hallmark of well-designed code is small methods

that do one thing, are loosely coupled, and have minimal side effects.

I used to think that was kind of a lucky coincidence, but now I think

it’s a direct side effect of building the code in tandem with the tests.

In effect, the tests act as a universal client for the entire code base,

guiding all the code to have clean interactions between parts because

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/nrtest

WHAT IS TDD GOOD FOR? 19

A Historical Parallel

What’s a Rails book without a good Franklin Roosevelt anec-
dote, right?

There’s a widely told and probably apocryphal story about FDR
meeting with a group of activists pushing a reform agenda—
exactly what the group wanted seems to have been lost to
history.

Anyway, when they were done with the meeting, FDR is sup-
posed to have said to them, “I agree with you. I want to do it;
now go make me do it.”

Ignore for the moment the question of whether this statement
makes sense as politics; it makes perfect sense as a test-driven
development motto. Your requirements determine what your
applications want to do. Your tests make the application do it.

the tests, acting as a third-party interloper, have to get in between all

the parts of the code in order to work.

This theory explains why writing the code first causes so much pain

when writing tests even if you just wait a little bit to get to the tests.

When the tests are written first, or in very close intertwined proximity

to the code, then the tests drive the code’s structure and enable the

code to have the good high-cohesion/low-coupling structure. When the

tests come later, they have to conform to the existing code, and it’s

amazing how easily and quickly code written without tests will move

toward low-cohesion and high-coupling forms that are much harder to

cover with tests. If your only experience with writing unit tests comes

only long after the initial code was written, the experience was likely

quite painful. Don’t let that turn you away from a TDD approach; the

tests and code you will write with TDD are much different.

1.4 What Is TDD Good For?

The primary purpose of this style of testing where the developer is writ-

ing tests for her own benefit is to improve the structure of the code.

That is, TDD is a software development technique rather than a com-

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/nrtest

WHAT IS TDD GOOD FOR? 20

plete testing program. (Don’t believe me, ask Kent Beck, who is most

responsible for TDD as a concept and who said, “Correctness is a side

effect” on a recent podcast.)6

Automated developer tests are a wonderful way of showing that the

program does what the developer thinks it does, but they are a lousy

way of showing that what the developer thinks is what the program

actually should do. “But the tests pass!” is not likely to be comforting to

a customer when the developer’s assumptions are just flat-out wrong.7

Automated developer testing is not a substitute for acceptance testing

with users or customers (which can itself be partially automated via

something like Cucumber) or some kind of QA phase where users or

testers pound away at the actual program trying to break something.

This goal can be taken too far, however. You sometimes see an argu-

ment against Test-Driven Development that runs something like this:

“The purpose of testing is to verify that my program is correct. I can

never prove this with 100 percent certainty. Therefore, testing has no

value.” (RSpec and Behavior-Driven Development were created, in part,

to combat this attitude.) Ultimately, though, testing has a lot of positive

benefits for coding, even beyond verification.

Preventing regression is often presented as one of the paramount ben-

efits of a test-driven development process. And if you are expecting me

to disagree out of spite, you’re out of luck. Being able to squash regres-

sions before anybody outside of your laptop sees them is one of the key

ways in which strict testing will speed up your development over time.

To make this work best, of course, you need good tests.

Another common benefit you may have heard in connection with auto-

mated tests is that they provide an alternate method of documenting

your program. The tests, in essence, provide a detailed, functional spec-

ification of the behavior of the program.

That’s the theory. My experience with tests acting as documentation is

mixed, to say the least. Still, it’s useful to keep this in mind as a goal,

and most of the things that make tests work better as documentation

will also make the tests work better, period.

To make your tests effective as documentation, focus on giving your

tests descriptive names, keeping tests short, and refactoring out com-

6. http://twit.tv/floss87. Good interview, recommended.

7. He says, speaking from painful experience....

CLICK HERE to purchase this book now.

http://twit.tv/floss87
http://www.pragprog.com/titles/nrtest

WHEN TDD NEEDS SOME HELP 21

mon setup and assertion parts. The documentation advantage of refac-

toring is removing clutter from the test itself—when a test has a lot of

raggedy setup and assertions, it can be hard for a reader to focus on the

important functional part. Also, with common features factored out, it’s

easier to focus on what’s different in each individual test.

In a testing environment, blank-page problems are almost completely

nonexistent. I can always think of something that the program needs to

do, so I write a test for that. When you’re working test-first, the actual

order in which pieces are written is not so important. Once a test is

written, the path to the next one is usually clear, and so on, and so on.

1.5 When TDD Needs Some Help

Test-Driven Development is very helpful, but it’s not going to solve all of

your development problems by itself. There are areas where developer

testing doesn’t apply or doesn’t work very well.

I mentioned one case already—developer tests are not very good at

determining whether the application is behaving correctly according to

requirements. Strict TDD is not very good at acceptance testing. There

are, however, automated tools that do try to tackle acceptance testing.

Within the Rails community, the most prominent of these is Cucum-

ber; see Chapter 15, Acceptance Testing with Cucumber, on page 237.

Cucumber can be integrated with TDD—you’ll see this called outside-in

testing or see the acronym ATDD for Acceptance Test–Driven Design.

That’s a perfectly valid and useful test paradigm, but it’s an extension

of the classic TDD process.

Testing your application assumes that you know the right answer. And

although you will have clear requirements or a definitive source of cor-

rect output some of the time, other times you don’t know what exactly

the program needs to do. In this exploratory mode, TDD is less benefi-

cial, because it’s hard to write tests if you don’t know what assertions

to make about the program. Often this happens during initial develop-

ment or during a proof of concept. I find myself in this position a lot

when view testing—I don’t know what to test for until I get some of the

view up and visible.

In classic Extreme Programming parlance, this kind of programming is

called a spike, as in, “I don’t know if we can do what we need with the

Twitter API; let’s spend a day working on a spike for it.” When working

in spike mode, TDD is generally not used, but it’s also the expectation

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/nrtest

COMING UP NEXT... 22

that the code written during the spike is not used in production; it’s

just a proof of concept.

When view testing, or in other nonspike situations where I’m not quite

sure what output to test for, I tend to go into a “test-next” mode, where

I write the code first, but in a TDD-sized small chunk, and then imme-

diately write the test. This works as long as I make the switch between

test and code frequently enough to get the benefit of having the code

and test inform each other’s design.

TDD is not a complete solution for verifying your application. We’ve

already talked about acceptance tests, but it’s also true that TDD tends

to be thin in terms of the amount of unit tests written. For one thing,

a strict TDD process would never write a test that you expect to pass.

In practice, though, I do this all the time. Sometimes I see and create

an abstraction in the code, but there are still valid test cases to write.

In particular, I’ll often write code for potential error conditions even if I

think they are already covered in the code. It’s a balance, because you

lose some of the benefit of TDD by creating too many test cases that

don’t drive code changes. One way to keep the balance is to make a

list of the test cases before you start writing the tests—that way you’ll

remember to cover all the interesting cases.

And hey, some things are just hard. In particular, some parts of your

application are going to be very dependent on an external piece of code

in a way that makes it hard to isolate them for unit testing. Mock

objects, described in Chapter 7, Using Mock Objects, on page 103, can

be one way to work around this issue. But there are definitely cases

where the cost of testing a feature like this is higher than the value of

the tests. To be clear, I don’t think that is a common occurrence, but it

would be wrong to pretend that there’s never a case where the cost of

the test is too high.

1.6 Coming Up Next...

This book is divided into six parts.

Part I, which you are currently in the middle of, is an introduction to

Rails testing. The next chapter, Chapter 2, The Basics of Rails Testing,

on page 26, covers what you need to know to get started with unit test-

ing in Ruby and Rails, covering Test::Unit, Test-Driven Design, and the

basic workflow of a Ruby test. The following two chapters, Chapter 3,

Writing Your First Tests, on page 44 and Chapter 4, TDD, Rails Style,

on page 63, present a tutorial or walk-through of a basic Rails feature

realized using TDD.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/nrtest

COMING UP NEXT... 23

Words to Live By

Any change to the logic of the program should be driven by a
failed test.

A test should be as close as possible to the associated code.

If it’s not tested, it’s broken.

Testing is supposed to help for the long term. The long term starts
tomorrow, or maybe after lunch.

It’s not done until it works.

Tests are code; refactor them too.

Start a bug fix by writing a test.

Part II of the book is about application data. Most of your Rails tests

will cover model code, discussed in Chapter 5, Testing Models with Rails

Unit Tests, on page 74. You’ll often need sample data to run tests, and

Chapter 6, Creating Model Test Data with Fixtures and Factories, on

page 83 talks about the two most common ways to manage test data.

Sometimes, though, you just need to bypass normal behavior entirely,

and Chapter 7, Using Mock Objects, on page 103 talks about the stan-

dard way of replacing normal program behavior as needed in testing.

The models are the back room of your code, and Part III talks about

testing the user-facing parts of your application. In Chapter 8, Test-

ing Controllers with Functional Tests, on page 130, we’ll talk about

the standard Rails way of testing controllers, while Chapter 9, Test-

ing Views, on page 141 discusses view testing. Increasingly, front-end

code includes Ajax and JavaScript, discussed in Chapter 10, Testing

JavaScript and Ajax, on page 157, which introduces the Jasmine frame-

work for JavaScript testing.

The second half of the book is largely about extensions to core Rails

testing. Part IV covers two of the biggest. Shoulda is covered in Chap-

ter 11, Write Cleaner Tests with Shoulda and Contexts, on page 171,

while RSpec gets its due in Chapter 12, RSpec, on page 188.

Part V of the book covers integration and acceptance testing that exer-

cises your entire application stack. First, Rails core integration testing

is covered in Chapter 13, Testing Workflow with Integration Tests, on

page 217. Webrat and Capybara are tools that give integration tests

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/nrtest

ACKNOWLEDGMENTS 24

more clarity and power, and they get their own chapter in Chapter 14,

Write Better Integration Tests with Webrat and Capybara, on page 226.

Cucumber has become a very popular tool for acceptance testing, and

Chapter 15, Acceptance Testing with Cucumber, on page 237 tells you

all about it.

The last part of the book is about evaluating your tests. The most

common objective measure of tests is code coverage, which you will

read about in Chapter 16, Using Rcov to Measure Test Coverage, on

page 260. Coverage isn’t everything in testing style, though, and Chap-

ter 17, Beyond Coverage: What Makes Good Tests?, on page 272 talks

about five other habits of highly successful tests. Adding tests to an

existing application has its own challenges, discussed in Chapter 18,

Testing a Legacy Application, on page 284. Finally, making your tests

run faster is always a good thing, and Chapter 19, Performance Test-

ing and Performance Improvement, on page 300 covers many different

strategies.

Ready? Me too.

1.7 Acknowledgments

Over the course of the two years that I have been working on this

project, I have had the guidance and support of many people. I hope

I haven’t forgotten anyone.

Back when this was just a DIY project, several people acted as early

readers and offered useful comments including Paul Barry, Anthony

Caliendo, Brian Dillard, Sean Hussey, John McCaffrey, Matt Polito, and

Christopher Redinger. Alan Choyna and David DiGioia helped support

the original Rails Prescriptions website. Alice Toth provided the origi-

nal website design. Dana Jones made many, many valuable editorial

corrections early in the life of the book.

Brian Hogan was the first person to suggest that this book might work

for Pragmatic. Gregg Pollack was the second, and Gregg’s kind words

about this project on the official Rails blog were the push I needed to

actually submit it.

Everybody I’ve worked with at Pragmatic has been outstanding. Dave

Thomas and Andy Hunt said nice things about early chapters of the

book, which was very encouraging. I doubt very much that Dave

Thomas remembers when I introduced myself to him at Rails Edge in

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/nrtest

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Home page for Rails Test Prescriptions

http://pragprog.com/titles/nrtest

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/nrtest.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/nrtest
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/nrtest
www.pragprog.com/catalog

