
Extracted from:

Rails Test Prescriptions
Keeping Your Application Healthy

This PDF file contains pages extracted from Rails Test Prescriptions, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

MOCK, MOCK, MOCK 114

in your test need to be in the mock_active_records() call, since an attempt

to call the stubbed instantiate() method with a nonmatching hash would

trigger an expectation error. In a factory universe, with only a couple of

object defined, that may not be a difficult constraint to live with. Also,

the internals of ActiveRecord may change in the future, causing this

mechanism to stop working.

There is a simpler option if you have only one or two objects to mock

and a simple method under test.

test "My projects might be properly saved" do

@bluebook = Project.make(:name => "Project Bluebook")

Project.stub(:find).return(@bluebook)

@bluebook.stubs(:save => true)

post :update, :id => @bluebook.id

«»

end

All this does is stub the Project class to always return @bluebook when

find() is called. That ensures that the controller method that looks up

the object using find() returns the same object that you’ve set up in the

test. There are sharp limitations here—basically, we’re assuming that

only one Project object needs to be created for the test. But there are a lot

of cases, like a simple update or create method, where that assumption

holds, and this is a reasonably clean way to share a stubbed object

between the test and the method being tested.

7.4 Mock, Mock, Mock

A true mock object retains the basic idea of the stub—returning a spec-

ified value without actually calling a live method—and adds the require-

ment that the specified method must actually be called during the test.

In other words, a mock is like a stub with attitude, expecting—nay,

demanding—that its parameters be matched in the test or else we get a

test failure.

As with stubs, Mocha provides a way to create a mock object from whole

cloth, as well as a way to add mock expectations to an existing object.

The method for bare mock creation is mock():

test "a sample mock" do

mocky = mock(:name => "Paul", :weight => 100)

assert_equal("Paul", mocky.name)

end

As it happens, this test fails:

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/nrtest

MOCK, MOCK, MOCK 115

1) Failure:

test_a_sample_mock(ProjectTest) [/test/unit/project_test.rb:46]:

not all expectations were satisfied

unsatisfied expectations:

- expected exactly once, not yet invoked:

#<Mock:0x25550bc>.weight(any_parameters)

satisfied expectations:

- expected exactly once, already invoked once:

#<Mock:0x25550bc>.name(any_parameters)

It fails because the first line sets up two mock expectations, one for

mocky.name() and one for mocky.weight(), but only one of those two

mocked methods are called in the test. Hence, it’s an unsatisfied expec-

tation. To pass the test, add a call to mocky.weight():

test "a sample mock" do

mocky = mock(:name => "Paul", :weight => 100)

assert_equal("Paul", mocky.name)

assert_equal(100, mocky.weight)

end

The method for adding a mock expectation to an existing object is

expects():5

Download huddle_mocha/test/unit/project_test.rb

test "lets mock an object" do

mock_project = Project.new(:name => "Project Greenlight")

mock_project.expects(:name).returns("Fred")

assert_equal("Fred", mock_project.name)

end

All the modifiers we’ve seen so far were applied to stubs, like returns(),

raises(), any_instance(), and with(), or all the pattern matchers can be

added to a mock statement. For example, the controller test for create

and update failure can be changed to use true mocks:

Download huddle_mocha/test/functional/projects_controller_test.rb

test "mock fail create gracefully" do

assert_no_difference('Project.count') do

Project.any_instance.expects(:save).returns(false)

post :create, :project => {:name => 'Project Runway'}

assert_template('new')

end

end

test "mock fail update gracefully" do

5. I have no idea why they didn’t use mocks, which would seem more consistent.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/nrtest/code/huddle_mocha/test/unit/project_test.rb
http://media.pragprog.com/titles/nrtest/code/huddle_mocha/test/functional/projects_controller_test.rb
http://www.pragprog.com/titles/nrtest

MOCK OBJECTS AND BEHAVIOR-DRIVEN DEVELOPMENT 116

Project.any_instance.expects(:update_attributes).returns(false)

put :update, :id => projects(:huddle).id, :project => {:name => 'fred'}

assert_template('edit')

actual = Project.find(projects(:huddle).id)

assert_not_equal('fred', actual.name)

end

Again, the behavior of these tests is identical to the stub version, except

for the additional, implicit test that the save() and update_attributes()

methods are, in fact, called during the test.

By default, mock() and expects() set a validation that the associated

method is called exactly once during the test. If that does not meet your

testing needs, Mocha has methods that let you specify the number of

calls to the method. These methods are largely self-explanatory:

proj = Project.new

proj.expects(:name).once

proj.expects(:name).twice

proj.expects(:name).at_least_once

proj.expects(:name).at_most_once

proj.expects(:name).at_least(3)

proj.expects(:name).at_most(3)

proj.expects(:name).times(5)

proj.expects(:name).times(4..6)

proj.expects(:name).never

In practice, the default behavior is good for most usages.

7.5 Mock Objects and Behavior-Driven Development

The interesting thing about using true mocks is that their usage en-

ables a completely different style of testing. In the tests we’ve seen

throughout most of this book, the test validates the result of a com-

putation: it’s testing the end state of a process. When using mocks,

however, we have the opportunity to test the behavior of the process

during the test, rather than the outcome.

An example will help clarify the difference. Back in Section 4.2, Testing

the View, on page 67, the Huddle application had a controller test that

was largely based on the results of a call to the model.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/nrtest

MOCK OBJECTS AND BEHAVIOR-DRIVEN DEVELOPMENT 117

Without mock objects, the test looked like this (from test/functional/

project_controller_test.rb):

Download huddle_mocha/test/functional/projects_controller_test.rb

test "project timeline index should be sorted correctly" do

set_current_project(:huddle)

get :show, :id => projects(:huddle).id

expected_keys = assigns(:reports).keys.sort.map{ |d| d.to_s(:db) }

assert_equal(["2009-01-06", "2009-01-07"], expected_keys)

assert_equal(

[status_reports(:ben_tue).id, status_reports(:jerry_tue).id],

assigns(:reports)[Date.parse("2009-01-06")].map(&:id))

end

As the process played out in that section, the assertions in this test

wound up being copied more or less identically to the model test that

actually exercised the model call that is made by the controller show()

action being tested here. At the time, we mentioned that a mock object

package would be a different way of writing the test. The mocked ver-

sion of the test could look something like this passing test:

Download huddle_mocha/test/functional/projects_controller_test.rb

Line 1 test "mock show test" do

2 set_current_project(:huddle)
3 Project.any_instance.expects(:reports_grouped_by_day).returns(
4 {Date.today => [status_reports(:aaron_tue)]})
5 get :show, :id => projects(:huddle).id
6 assert_not_nil assigns(:reports)
7 end

At first glance, that looks ridiculously minimalist. It doesn’t seem to

actually be asserting much of anything. The trick is the combination of

the mock expectation set in lines 3–4, along with the rest of the tests

that presumably exist in this system. This test validates that the con-

troller calls the model method reports_grouped_by_day() exactly once,

and it validates that the reports variable is set to some value. It also

validates that the controller and view run without error, but that’s sec-

ondary. The test is validating a behavior of the controller method—

namely, that it calls a particular model method, not the state that

results from making that call.

What this test doesn’t do is attempt to validate features that are actu-

ally the purview of other tests. It doesn’t validate the response from the

model method; that’s the job of the model test. What the view layer does

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/nrtest/code/huddle_mocha/test/functional/projects_controller_test.rb
http://media.pragprog.com/titles/nrtest/code/huddle_mocha/test/functional/projects_controller_test.rb
http://www.pragprog.com/titles/nrtest

MOCK OBJECTS AND BEHAVIOR-DRIVEN DEVELOPMENT 118

with this value is the job of a view test. This test validates that a par-

ticular instance variable is set to a value using a known model method,

on the theory that the job of the controller method is to produce a set

of known values for use by the view. But validating the exact value of

the :reports variable would be pointless (at least in this case), since the

value is completely generated by the mock expectation.

Using mock objects in this style of testing has advantages and disad-

vantages. Speed is a significant advantage: getting values from mocks

is going to be a lot faster than getting values from either a fixture or

a factory database. Another advantage is the encapsulation of tests. In

the previous example, if a bug is introduced into the model object, the

only tests that will fail will be the model tests—the controller tests, pro-

tected by the mock, will be fine. The nonmock version of the controller

test, however, is susceptible to failure based on the results of the model

method. Done right, this kind of encapsulation can make it easier to

diagnose and fix test failures.

However, there are a couple of potential problems to watch out for. One

is a mismatch between the mocked method and the real method. In

the previous controller example, the mock call causes the method to

return a hash where the key is a Date object and the values are lists

of StatusReport objects. If, however, the model method really returns a

hash with the keys as strings, then you can have a case where the con-

troller method passes, the model method passes, but the site as a whole

breaks. In practice, this problem can be covered by using integration

or acceptance tests; see Chapter 13, Testing Workflow with Integration

Tests, on page 217 and Chapter 15, Acceptance Testing with Cucumber,

on page 237.

It’s also not hard to inadvertently create a test that is tautological by

setting a mock to some value and then validating that the mocked

method returns that value (the earlier examples that show how stubbed

methods work have this flaw).

Finally, an elaborate edifice of mocked methods runs the risk of causing

the test to be dependent on very specific details of the method struc-

ture of the object being mocked. This can make the test brittle in the

face of refactorings that might change the object’s methods. Good API

design and an awareness of this potential problem go a long way toward

mitigating the issue.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/nrtest

MOCK DOS AND MOCK DON’TS 119

I have to say, as much as I love using mocks and stubs to cover hard-

to-reach objects and states, my own history with very strict behavior-

based mock test structures hasn’t been great. My experience was that

writing all the mocks around a given object tended to be a drag on the

test process. But I’m wide open to the possibility that this method works

better for others or that I’m not doing it right. Or, to quote Stephen

Bristol:6 “RSpec, done properly, isn’t testing. It is designing.”

7.6 Mock Dos and Mock Don’ts

Here are some guidelines on the best usage of stubs and mocks:

• If you are using your fake objects to take the place of real objects

that are hard or impossible to create in a test environment, it’s

probably a good idea to use stubs rather than mocks. If you are

actually using the fake value as an input to a different process,

then you should test that process directly using the fake value

rather than a mock. Adding the mock expectation just gives you

another thing that can break, which in this use case is probably

not related to what you are actually testing.

• When you are using a true mock to encapsulate a test and isolate

it from methods that are not under test, try to limit the number

of methods you are mocking in one test. The more mocks, the

more vulnerable the test will be to changes in the actual code. A

lot of mocks may indicate that your test is trying to do too much

or might indicate a poor object-oriented design where one class is

asking for too many details of a different class.

• I’ve come to use mocks frequently in controller testing to isolate

the controller test from the behavior of the model, essentially only

testing that the controller makes a specific model call and using

the model test to verify model behavior. Among the benefits of

using mocks this way is you are encouraged to make the inter-

face between your controllers and models as simple as possible.

However, it does mean that the controller test knows more about

your model than it otherwise might, which may make the model

code harder to change.

6. http://twitter.com/stevenbristol/statuses/1221264618

CLICK HERE to purchase this book now.

http://twitter.com/stevenbristol/statuses/1221264618
http://www.pragprog.com/titles/nrtest

COMPARING MOCK OBJECT LIBRARIES 120

• You also need to be careful of mocking methods that have side

effects or that call other methods that might be interesting. The

mock totally bypasses the original method, which means no side

effect and no calling the internal method. Pro tip: saving to the

database and outputting to the response stream are both side

effects.

• Be very nervous if you are specifying a value as a result of a mock

and then asserting the existence of the very same value. One of

the biggest potential problems with any test suite is false positives,

and testing results with mocked values is a really efficient way to

generate false positives.

• A potentially larger problem is the type mismatch issue between

the real method and values being used for mocks. Integration

or acceptance testing can help with this problem, but that’s not

much help during development. I don’t know that there’s an auto-

mated way to ensure that mock values are actually valid possible

results and still get the benefits of using mocks, so it’s something

to keep an eye on.

7.7 Comparing Mock Object Libraries

Now that we’ve spent some time exploring how mock objects work using

Mocha, let’s take a brief look at the various ways that the other popular

Ruby mock libraries manage similar tasks. There are four packages

that are currently popular:

FlexMock

This is the original Ruby mock object package.

Mocha

We’ve already discussed this at some length. It’s quasi-official for

Rails in that it is used in Rails core.

RSpec

The RSpec library, described in more detail in Chapter 12, RSpec,

on page 188, defines its own mock object package

RR

Pronounced “Double Ruby,” it’s the newest entry, with a more con-

cise syntax than the other packages and unique advanced fea-

tures.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/nrtest

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Home page for Rails Test Prescriptions

http://pragprog.com/titles/nrtest

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/nrtest.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/nrtest
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/nrtest
www.pragprog.com/catalog

