Extracted from:

Rails 4 Test Prescriptions
Build a Healthy Codebase

This PDF file contains pages extracted from Rails 4 Test Prescriptions, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or
PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2014 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

The Pragmatic Bookshelf

Dallas, Texas - Raleigh, North Carolina

http://www.pragprog.com

Rails 4

Test Prescriptions

Build a Healthy
Codebase

i

ﬁf

(v

i

Noel Rappin

Edited by Lynn Beighley

Rails 4 Test Prescriptions
Build a Healthy Codebase

Noel Rappin

The Pragmatic Bookshelf

Dallas, Texas « Raleigh, North Carolina

Pr matic
ookshelf

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Susannah Davidson Pfalzer (editor)
Potomac Indexing, LLC (indexer)
Candace Cunningham (copyeditor)
Dave Thomas (typesetter)

Janet Furlow (producer)

Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2014 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-941222-19-5

Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—December 2014

https://pragprog.com
rights@pragprog.com

Rails applications follow a model-view-controller, or MVC, pattern. The view
layer has the responsibility of presenting data to the user, which in a server-
side web application usually means generating HTML. Ideally, the view layer
does this with minimal interaction with the model. The controller takes in
information about the user request, contacts the appropriate parts of the
model layer for data, and passes that information on to the view layer. The
following is a very simplified diagram.

Database

User

Testing Rails controllers and views is more challenging than testing Rails
models. You can see from the diagram that controllers and views both interact
with the external users, whereas models are more inherently isolated. In Rails,
controller and view instances are typically created by the framework itself
and are not easy to create in isolation during a test. (As far as the Rails
developer is concerned, the view instance is mostly just a template.) Controller
and view calls often are more interesting for their side effects than for the
value they return. Also, individual controller actions and view templates are
often too large to be meaningfully unit-tested.

While the Rails framework and third-party testing tools allow us to interact
with controller actions and view templates in our test environment, the issues
of isolation and size still exist. A discussion of how to best test views and
controllers, therefore, often turns into a discussion about what code belongs
in the controller and view and what should be extracted into a different object.
The object extracted to, which is not a part of the Rails framework, is some-
times referred to as a PORO: Plain Old Ruby Object. The issue of how to best
deconstruct or refactor controller and view code is somewhat contentious
within the Rails community.

We've discussed the idea that the most useful tests test either an entire end-
to-end process or a single unit. Controller and view tests are easy to put in
the middle ground and are therefore notoriously brittle and hard to manage.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/nrtest2
http://forums.pragprog.com/forums/nrtest2

°6

Testing Controllers

We've already written a few controller tests as part of our earlier testing
walkthroughs. Let’s take a look at one of them:

display/01/gatherer/spec/controllers/projects_controller_spec.rb
Linel require 'rails helper'

RSpec.describe ProjectsController, type: :controller do

describe "POST create" do
it "creates a project" do
post :create, project: {name: "Runway", tasks: "Start something:2"}
expect(response).to redirect to(projects path)
expect(assigns(:action).project.name).to eq("Runway")
end

O N LA W N

o

This test is simple but has most of the features of a basic controller test. Like
many tests we have seen, controller tests have three parts. First, the controller
test may create data needed to cover a particular logic path. We don’t need
any data for this test, but we will see examples of generating controller-spe-
cific test data in our next examples. Second, on line 7 the code performs an
action. Specifically, it simulates a post request to the controller’s create action
with one argument, the hash {name: "Runway", tasks: "start something:2"}, which
represents the parameters being passed to the action as part of the request.

Finally, on lines 8 and 9, our test makes assertions about the controller’s
behavior. Broadly, we care about two kinds of behavior. We care about what
template or other action the controller passes control to. The redirect _to
matcher is one of a few assertions added by RSpec in controller test groups
to specify that transfer of control. We may also care that the controller specifies
particular instance variables for use by a view template. The assigns method
is also managed by RSpec controller groups to enable assertions to be made
about those values.

What to Test in a Controller Test

Ideally, your controllers are relatively simple. The complicated functionality
is in a model or other object and is being tested in your unit tests for those
objects. One reason this is a best practice is that models are easier to test
than controllers because they are generally easier to extract and use indepen-
dently in a test framework.

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/nrtest2/code/display/01/gatherer/spec/controllers/projects_controller_spec.rb
http://pragprog.com/titles/nrtest2
http://forums.pragprog.com/forums/nrtest2

Simulating Requests in a Controller Test ® 7

A controller test should test controller behavior. A controller
test should not fail because of problems in the model.

A controller test that overlaps with model behavior is part of the awkward
middle ground of testing that we're trying to avoid. If the controller test is
actually going to the database, then the test is slower than it needs to be,
and if a model failure can cascade into the controller tests, then it's harder
than it needs to be to isolate the problem.

A controller test should have one or more of the following goals:

e Verifying that a normal, basic user request triggers expected model calls
and passes the necessary data to the view.

¢ Verifying that an ill-formed or otherwise invalid user request is handled
properly, for whatever definition of “properly” fits your app.

¢ Verifying security, such as requiring logins for pages as needed and testing
that users who enter a URL for a resource they shouldn’t be able to see
are blocked or diverted. We will discuss this more in Chapter 11, Testing
for Security, on page .

Simulating Requests in a Controller Test

Most of your controller tests in Rails will surround a simulated request. To
make this simulation easier, Rails provides a controller test method for each
HTTP verb: delete, get, head, patch, post, and put. Each of these methods works
the same way. (Internally, they all dispatch to a common method that does
all the work.) A full call to one of these methods has five arguments, though
you’ll often just use the first three:

get :show, {id: @task.id}, {user id: "3",
current _project: @project.id.to s}, {notice: "flash test"}

The method name, get, is the HTTP verb being simulated—sort of. While the
controller test will set the HTTP verb if for some reason you query the Rails
request object, it does not check the Rails routing table to see if that action
is reachable using that HTTP verb. As a result, you can’t test routing via a
controller test. Rails does provide a mechanism for testing routes, which we’ll
cover in Testing Routes, on page 11.

The first argument—in this case :show—is the controller action being called.
The second argument, {id: @task.id}, is a hash that becomes the params hash in
the controller action. In the controller action called from this test, you would
expect params[:id] to equal @task.id. The Rails form name-parsing trick is not

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/nrtest2
http://forums.pragprog.com/forums/nrtest2

°8

used here—if you want to simulate a form upload, you use a multilevel hash
directly, as in user: {name: "Noel", email: "noel@noelrappin.com"}, which implies
params[:user][:name] == "Noel" in the controller.

Any value passed in this hash argument is converted to a string—specifically,
to_param is called on it. So you can do something like id: 3, confident that it will
be "3" in the controller. This, by the way, is a welcome change in recent ver-
sions of Rails; older versions did not do this conversion, which led to occasion-
al heads pounding against walls.

If one of the arguments is an uploaded file—say, from a multipart form—you
can simulate that using the Rails helper fixure_file_upload(filename, mime_type), like
this:

post :create, logo: fixture file upload('/test/data/logo.png', 'image/png')

If you're using a third-party tool, such as Paperclip or CarrierWave to manage
uploads, those tools typically have more specific testing helpers.

The fourth and fifth arguments to these controller methods are optional and
rarely used. The fourth argument sets key/value pairs for the session object,
which is useful in testing multistep processes that use the session for conti-
nuity. The fifth argument represents the Rails flash object, which is use-
ful...well, never, but if for some reason the incoming flash is important for
your logic, there it is.

You may occasionally want to do something fancier to the simulated request.
In a controller test you have access to the request object as @request, and
access to the controller object as @controller. (As you'll see in Evaluating Con-

the HTTP headers using the hash @request.headers.

There is one more controller action method, xml_http request (also aliased to xhr).
This simulates a classic Ajax call to the controller and has a slightly different
signature:

it "makes an ajax call" do

xhr :post, :create, :task => {:id => "3"}
end

The method name is xhr, the first argument is the HTTP verb associated with
the xhr call, and the remaining arguments are the arguments to all the other
controller-calling methods in the same order: action, params, session, and flash.
The xhr call sets the appropriate headers such that the Rails controller will
appropriately be able to consider the request an Ajax request (meaning .js

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/nrtest2
http://forums.pragprog.com/forums/nrtest2

Evaluating Controller Results ® 9

format blocks will be triggered), then simulates the call based on its argu-
ments.

Evaluating Controller Results

A controller test has three things you might want to validate after the controller
action:

e Did it return the expected HTTP status code? RSpec provides the
response.status object and the have_http_status matcher for this purpose.

¢ Did it pass control to the expected template or redirected controller action?
Here we have the render_template and redirect to matchers.

e Did it set the values that the view will expect? For this we have the special
hash objects assigns, cookies, flash, and session.

Often you’ll combine more than one of these in the same test:

it "is a successful index request with no filters" do
get :index
expect(response).to have http status(:success)
expect(response).to render template(:index)

end

Asserting Controller Response Type

Let’s talk about these three types of assertions in more detail:

We can use have_http_status to verify the HTTP response code sent back to the
browser from Rails. Normally we use this assertion to ensure that our con-
troller correctly distinguishes between success and redirect or error cases.

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/nrtest2
http://forums.pragprog.com/forums/nrtest2

The value passed to have_http_status is usually one of four special symbols:

Symbol HTTP Code Equivalent Symbol HTTP Code Equivalent
:success 200-299 rredirect 300-399

:missing 404 .error 500-599

If you need to test for a more specific response, you can pass either the exact
HTTP code number or one of the associated symbols defined by Rack.' Note
that RSpec uses the codes defined by SYMBOL TO_STATUS CODE. The most common
case I've had for specific HTTP codes is the need to distinguish between 301
permanent redirects (:moved-permanently) and other redirects.

Asserting Which View Is Rendered

The render template matcher is used to determine whether the controller is
passing control to the expected view template. The method has a simple form
and then some optional complexity. In the simple form, render_template is passed
a template name that is specified exactly as it would be in the controller,
using render :action—the template name can be a string or a symbol. If the
argument is just a single string or symbol, then it is checked against the
name of the main template that rendered the action.

Normally I will not employ render_template when the controller action is just
using the implicit Rails default and ceding to a view of the same name. I will
use render template when I expect the controller will need to explicitly pass
control to a specific template, with the most common case being a create action
that is successful and renders a show template.

When you expect the controller to redirect, you can use redirect_to to assert the
exact nature of the redirect. The argument to redirect_to is pretty much anything
Rails can convert to a URL, although the method’s behavior is slightly different
based on what the argument actually is. The code for redirect to explicitly
includes have_http_status(:redirect), so you don’t need to duplicate that assertion.

If the argument to redirect_to is the name of a URL because it’s a string or a
method for a Rails named route, or because it’s an object that has a Rails
RESTful route, then the assertion passes if and only if the redirecting URL
exactly matches the asserted URL. For testing purposes, Rails will assume
that the application’s local hostname is http://www.example.com. If that’s too exact
a test for your taste, you can pass a hash to redirect_to, which specifies the
:controller, :action, and any parameters. If the argument is a hash, then

1. https://github.com/rack/rack/blob/master/lib/rack/utils.rb

« Click HERE to purchase this book now. discuss

https://github.com/rack/rack/blob/master/lib/rack/utils.rb
http://pragprog.com/titles/nrtest2
http://forums.pragprog.com/forums/nrtest2

Testing Routes ® 11

assert_redirected_to checks only the exact key/value pairs in the hash; other
parts of the URL are not checked.

Rails controller tests do not—repeat, do not—follow the redirect. Any data-
validation tests you write apply only to the method before the redirect occurs.
If you need your test to follow the redirection for some reason, you are cordially
invited to try something in an integration test; see Chapter 10, Integration

Testing with Capybara and Cucumber, on page ?.

Asserting Controller Data

Rails allows you to verify the data generated by the controller action being
tested with the four items mentioned earlier: assigns, session, cookies, and flash.
Of these, assigns, which gives access to instance variables declared by the
controller, is the most commonly used. A typical use might look like this, with
a common use of assigns and an admittedly contrived use of session:

it "shows a task" do
task = Task.create!
get :show, id: task.id
expect(response).to have http status(:success)
expect(assigns(:task).id).to eq(task.id)
expect(session[:previous pagel]).to eq("task/show")
end

The cookies and flash special variables are used similarly, though I don’t write
tests for the flash very often. The cookie hash has key/value pairs only for
cookies. If you want to test other cookie attributes, you need to access them
via the request object.

Testing Routes

Although the basics of Rails routing are simple, the desire to customize Rails’
response to URLs can lead to confusion about exactly what your application
is going to do when converting between a URL and a Rails action. Rails pro-
vides a way to specify route behavior in a test.

Routing tests are not typically part of my TDD process—usually my integration
test implicitly covers the routing. That said, sometimes routing gets compli-
cated and has some logic of its own (especially if you're trying to replicate an
existing URL scheme), so it’s nice to have this as part of your test suite.

RSpec-Rails puts route tests in the spec/routing directory. The primary matcher
that RSpec-Rails uses for route testing is route to. Here’s a sample test that
includes all seven default RESTful routes for the project resource:

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/nrtest2
http://forums.pragprog.com/forums/nrtest2

°12

display/01/gatherer/spec/routing/project_routing_spec.rb
require 'rails helper'

RSpec.describe "project routing" do
it "routes projects" do
expect(get: "/projects").to route to(
controller: "projects", action: "index")
expect(post: "/projects").to route to(
controller: "projects", action: "create")
expect(get: "/projects/new").to route to(
controller: "projects", action: "new")
expect(get: "/projects/1").to route to(
controller: "projects", action: "show", id: "1")
expect(get: "/projects/1/edit").to route to(
controller: "projects", action: "edit", id: "1")
expect(patch: "/projects/1").to route to(
controller: "projects", action: "update", id: "1")
expect(delete: "/projects/1").to route to(
controller: "projects", action: "destroy", id: "1")
end
end

All of these are using the same form. The argument to expect is a key/value
pair where the key is the HTTP verb and the value is the string form of the
route. The argument to route_to is a set of key/value pairs where the keys are
the parts of the calculated route (including controller, action, and what have you)
and the values are, well, the values.

The route_to matcher tests the routes in both directions. It checks that when
you send the path through the routing engine, you get the controller, action,
and other variables specified. It also checks that the set of controller, action,
and other variables sent through the router results in the path string (which
is why you might need to specify query-string elements). It’s not clear to me
why a route might pass in one direction and not the other.

RSpec also provides a be_routable method, which is designed to be used in the
negative to show that a specific path—say, the Rails default—is not recognized:

expect(get: "/projects/search/fred").not to be routable

Testing Helper Methods

Helper modules are the storage attic of Rails applications. They are designed
to contain reusable bits of view logic. This might include view-specific repre-
sentations of data, or conditional logic that governs how content is displayed.
Helper modules tend to get filled with all kinds of clutter that doesn’t seem
to belong anywhere else. Because they are a little tricky to set up for testing,

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/nrtest2/code/display/01/gatherer/spec/routing/project_routing_spec.rb
http://pragprog.com/titles/nrtest2
http://forums.pragprog.com/forums/nrtest2

Testing Helper Methods ¢ 13

helper methods often aren’t tested even when they contain significant amounts
of logic.

RSpec helper tests go in spec/helpers. There’s not a whole lot of special magic
here—just a helper object that you use to call your helper methods.

Let’s say we want to change our project view so behind-schedule projects
show up differently. We could do that in a helper. My normal practice is to
add a CSS class to the output for both the regular and behind-schedule cases,
to give the design maximum freedom to display as desired.

Here’s a test for that helper:

display/01/gatherer/spec/helpers/projects_helper_spec.rb
Linel require 'rails helper'

- RSpec.describe ProjectsHelper, :type => :helper do
let(:project) { Project.new(name: "Project Runway") }

it "augments with status info" do
allow(project).to receive(:on_schedule?).and return(true)
actual = helper.name with status(project)
expect(actual).to have selector("span.on schedule", text: "Project Runway")
10 end

- end

In this test we're creating a new project using a standard ActiveRecord new
method. Rather than define a bunch of tasks that would mean the new project
is on schedule, we just stub the on_schedule? method on line 7 to return true.
This has the advantage of being faster than creating a bunch of objects and,
I think, being more clear as to the exact state of the project being tested.

We're using the have_selector matcher again to compare the expected HTML
with the generated HTML. We'll cover have_selector in more detail when we talk
about Capybara.

That test will fail because we haven’t defined the name with_status helper. Let’s
define one:

display/01/gatherer/app/helpers/projects_helper.rb
Line1 module ProjectsHelper

3 def name with status(project)

4 content tag(:span, project.name, class: 'on schedule')
5 end

6 end

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/nrtest2/code/display/01/gatherer/spec/helpers/projects_helper_spec.rb
http://media.pragprog.com/titles/nrtest2/code/display/01/gatherer/app/helpers/projects_helper.rb
http://pragprog.com/titles/nrtest2
http://forums.pragprog.com/forums/nrtest2

° 14

The test passes; now let’s add a second test for the remaining case. This test
will look familiar.

display/02/gatherer/spec/helpers/projects_helper_spec.rb
it "augments project name with status info when behind schedule" do
allow(project).to receive(:on schedule?).and return(false)
actual = helper.name with status(project)
expect(actual).to have selector("span.behind schedule", text: "Project Runway")
end

It passes with the following:

display/02/gatherer/app/helpers/projects_helper.rb
module ProjectsHelper

def name with status(project)

dom class = project.on schedule? ? 'on schedule' : 'behind schedule'
content tag(:span, project.name, class: dom class)
end

end

One gotcha that you need to worry about when view-testing is using Rails-
internal view methods like url_for. Although all core Rails helpers are automat-
ically loaded into the ActionView test environment, one or two have significant
dependencies on the real controller object and therefore fail with opaque error
messages during helper testing. The most notable of these is url_for. One
workaround is to override url_for by defining it in your own test case. (The
method signature is def url_for(options = {}).) The return value is up to you; a
simple stub response is often good enough.

Sometimes helper methods take a block, which is expected to be ERB text.
One common use of this kind of helper is access control, in which the logic
in the helper determines whether the code in the block is invoked. Blocks
also are very helpful as wrapper code for HTML that might surround many
different kinds of text—a rounded-rectangle effect, for example.

Here’s a simple example of a helper that takes a block:

def if logged in
yield if logged in?
end

Which would be invoked like so:
<% 1f logged in do %>

<%= link to "logout", logout path %>
<% end %>

« Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/nrtest2/code/display/02/gatherer/spec/helpers/projects_helper_spec.rb
http://media.pragprog.com/titles/nrtest2/code/display/02/gatherer/app/helpers/projects_helper.rb
http://pragprog.com/titles/nrtest2
http://forums.pragprog.com/forums/nrtest2

Testing Helper Methods ¢ 15

To test the if logged_in helper, we take advantage of the fact that the yield
statement is the last statement of the helper and therefore is the return value,
and of the fact that Ruby will let us pass any arbitrary string into the block,
giving us tests that look like this:

it "does not display if not logged in" do
expect(logged in?).to be falsy
expect(if logged in { "logged in" }).to be nil
end

it "displays if logged in" do

login as users(:quentin)

expect(logged in?).to be truthy

expect(if logged in { "logged in" }).to eq("logged in")
end

The first test asserts that the block is not invoked, so the helper returns nil.
The second asserts that the block is invoked, just returning the value passed
into the block.

You have to be a little careful here because these tests are just testing the
helper method’s return value, not what is sent to the output stream. The
output-stream part is a side effect of the process, but it is stored in a variable
called output_buffer, which you can access via testing. So you could write the
preceding tests as follows:

it "does not display if not logged in" do
expect(logged in?).to be falsy
if logged in { "logged in" }
expect(output_buffer).to be nil

end

it "displays if logged in" do
login as users(:quentin)
expect(logged in?).to be truthy
if logged in { "logged in" }
expect(output buffer).to eq("logged in")
end

« Click HERE to purchase this book now. discuss

http://pragprog.com/titles/nrtest2
http://forums.pragprog.com/forums/nrtest2

