
Extracted from:

Rails 4 Test Prescriptions
Build a Healthy Codebase

This PDF file contains pages extracted from Rails 4 Test Prescriptions, published
by the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2014 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Rails 4 Test Prescriptions
Build a Healthy Codebase

Noel Rappin

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Susannah Davidson Pfalzer (editor)
Potomac Indexing, LLC (indexer)
Candace Cunningham (copyeditor)
Dave Thomas (typesetter)
Janet Furlow (producer)
Ellie Callahan (support)

For international rights, please contact rights@pragprog.com.

Copyright © 2014 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-941222-19-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—December 2014

https://pragprog.com
rights@pragprog.com

As the Rails community has matured, Rails developers have become much
more likely to work with codebases and test suites that contain many years’
worth of work. As a result, there has been a lot of discussion about design
strategies to manage complexity over time.

There hasn’t been nearly as much discussion about what practices make
tests and test suites continue to be valuable over time. As applications grow,
as suite runs get longer, as complexity increases, how can you write tests
that will be useful in the future and not act as an impediment to future
development?

The Big One
The best, most general piece of advice I can give about the style and structure
of automated tests is this:

Your tests are also code. Specifically, your tests are code
that does not have tests.Prescription 8

Your code is verified by your tests, but your tests are verified by nothing.

Having your tests be as clear and manageable as possible is the only way to
keep them honest.

The Big Two
If a programming practice or tool is successful, following or using it will make
it easier to:

• add the code I need in the short term.
• continue to add code to the project over time.

All kinds of gems in the Ruby and Rails ecosystem help with the first goal
(including Rails itself). Testing is normally thought of as working toward the
second goal. That’s true, but often people assume the only contribution testing
makes toward long-term application health is verification of application logic
and prevention of regressions. In fact, over the long term test-driven develop-
ment tends to pay off as good tests lead toward modular designs.

This means a valuable test saves time and effort over the long term, while a
poor test costs time and effort. I’ve focused on five qualities that tend to make
a test save time and effort. The absence of these qualities, on the other hand,
is often a sign that the test could be a problem in the future.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/nrtest2
http://forums.pragprog.com/forums/nrtest2

The More Detailed Five: SWIFT Tests
I like to use five criteria to evaluate test quality. I’ve even managed to turn
them into an acronym that is only slightly contrived: SWIFT.

• Straightforward
• Well defined
• Independent
• Fast
• Truthful

Let’s explore those in more detail.

[S]traightforward
A test is straightforward if its purpose is immediately understandable.

Straightforwardness in testing goes beyond just having clear code. A
straightforward test is also clear about how it fits into the larger test suite.
Every test should have a point: it should test something different from the
other tests, and that purpose should be easy to discern from reading the test.

Here is a test that is not straightforward:

Don't do this
it "should add to 37" do

expect(User.all_total_points).to eq(37)
end

Where does the 37 come from? It’s part of the global setup. If you were to
peek into this fake example’s user fixture file, you’d see that somehow the
totals of the points of all the users in that file add up to 37. The test passes.
Yay?

There are two relevant problems with this test:

• The 37 is a magic literal that apparently comes from nowhere.
• The test’s name is utterly opaque about whether this is a test for the

main-line case, a test for a common error condition, or a test that exists
only because the coder was bored and thought it would be fun.

Combine these problems, and it quickly becomes next to impossible to fix the
test a few months later when a change to the User class or the fixture file
breaks it.

Naming tests is critical to being straightforward. Creating data locally and
explicitly also helps. With most factory tools (see Factories, on page ?), default

• 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/nrtest2
http://forums.pragprog.com/forums/nrtest2

values are preset, so the description of an object created in the test can be
limited to defining only the attributes that are actually important to the
behavior being tested. Showing those attributes in the test is an important
clue to the programmer’s intent. Rewriting the preceding test with a little
more information might result in this:

it "rounds total points to the nearest integer" do
User.create(:points => 32.1)
User.create(:points => 5.3)
expect(User.all_total_points).to eq(37)

end

It’s not poetry, but at the very least an interested reader now knows where
that pesky 37 comes from and where the test fits in the grand scheme of
things. The reader might then have a better chance of fixing the test if some-
thing breaks. The test is also more independent since it no longer relies on
global fixtures—making it less likely to break.

Long tests or long setups tend to muddy the water and make it hard to iden-
tify the critical parts of the test. The same principles that guide refactoring
and cleaning up code apply to tests. This is especially true of the rule that
states “A method should only do one thing,” which here means splitting up
test setups into semantically meaningful parts, as well as keeping each test
focused on one particular goal.

On the other hand, if you can’t write short tests, consider the possibility that
it is the code’s fault and you need to do some redesign. If it’s hard to set up
a short test, that often indicates the code has too many internal dependencies.

There’s an old programming adage that goes like this: “Debugging is twice as
hard as writing the code in the first place. Therefore, if you write the code as
cleverly as possible, you are, by definition, not smart enough to debug it.” (I
got the quote from http://quotes.cat-v.org/programming/, but the original source is
Brian W. Kernighan and P.J. Plauger’s The Elements of Programming Style.)
Because tests don’t have their own tests, this quote suggests that you should
keep your tests simple to give yourself cognitive room to understand them.

In particular, this guideline argues against using clever tricks to reduce
duplication among multiple tests that share a similar structure. If you find
yourself starting to metaprogram to generate multiple tests in your suite,
you’ll probably find that complexity working against you at some point. You
never want to have to decide whether a bug is in your test or in the code. And
when—not if—you do find a bug in your test suite, it’s easier to fix if the test
code is simple.

• Click HERE to purchase this book now. discuss

The More Detailed Five: SWIFT Tests • 7

http://quotes.cat-v.org/programming/
http://pragprog.com/titles/nrtest2
http://forums.pragprog.com/forums/nrtest2

We’ll talk more about clarity issues throughout the book. In particular, the
issue will come up when we discuss factories versus fixtures as ways of adding
test data in Chapter 6, Adding Data to Tests, on page ?.

[W]ell Defined
A test is well defined if running the same test repeatedly gives the same result.
If your tests are not well defined, the symptom will be intermittent, seemingly
random test failures (sometimes called Heisenbugs, Heisenspecs, or Rando
Calrissians).

Three classic causes of repeatability problems are time and date testing,
random numbers, and third-party or Ajax calls. In all cases the issue is that
your test data changes from test to test. Dates and times have a nasty habit
of monotonically increasing, while random data stubbornly insists on being
random. Similarly, tests that depend on a third-party service or even test
code that makes Ajax calls back to your own application can vary from test
run to test run, causing intermittent failures.

Dates and times tend to lead to intermittent failures when certain magic time
boundaries are crossed. You can also get tests that fail at particular times of
day or when run in certain time zones. Random numbers, in contrast, make
it somewhat difficult to test both the randomness of the number and that the
randomly generated number is used properly in whatever calculation requires
it.

The test plan is similar for dates, randomness, and external services—really,
it applies to any constantly changing dataset. We test changing data with a
combination of encapsulation and mocking. We encapsulate the data by cre-
ating a service object that wraps around the changing functionality. By
mediating access to the changing functionality, we make it easier to stub or
mock the output values. Stubbing the values provides the consistency we
need for testing.

We might, for example, create a RandomStream class that wraps Ruby’s rand()
method:

class RandomStream
def next

rand()
end

end

This example is a little oversimplified—normally we’d be encapsulating Ran-
domStream. With your own wrapper class, you can provide more specific

• 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/nrtest2
http://forums.pragprog.com/forums/nrtest2

methods tuned to your use case, something like def random_phone_number. First
you unit-test the stream class to verify that the class works as expected. Then
any class that uses RandomStream can be provided mock random values to allow
for easier and more stable testing.

The exact mix of encapsulation and mocking varies. Timecop is a Ruby gem
that stubs the time and date classes with no encapsulation—in Rails 4.1,
ActiveSupport has a similar feature. This allows us to specify an exact value
for the current time for testing purposes. That said, nearly every time I talk
about Timecop in a public forum, someone points out that creating a time
service is a superior solution.

We’ll discuss this pattern for wrapping a potentially variable external service
in more detail in Chapter 12, Testing External Services, on page ?. We’ll
cover mock objects in Chapter 7, Using Test Doubles as Mocks and Stubs, on
page ?, and we’ll talk more about debugging intermittent test failures in
Chapter 14, Troubleshooting and Debugging, on page ?.

[I]ndependent
A test is independent if it does not depend on any other tests or external data
to run. An independent test suite gives the same results no matter the order
in which the tests are run, and tends to limit the scope of test failures to only
tests that cover a buggy method.

In contrast, a very dependent test suite could trigger failures throughout your
tests from a single change in one part of an application. A clear sign that your
tests are not independent is if you have test failures that happen only when
the test suite is run in a particular order—in fully independent tests, the
order in which they are run should not matter. Another sign is a single line
of code breaking multiple tests.

The biggest impediment to independence in the test suite itself is the use of
global data. Rails fixtures are not the only possible cause of global data in a
Rails test suite, but they are a common cause. Somewhat less common in a
Rails context is using a tool or third-party library in a setup and not tearing
it down.

Outside the test suite, if the application code is not well encapsulated it may
be difficult or impossible to make the tests fully independent of one another.

[F]ast
It’s easy to overlook the importance of pure speed in the long-term mainte-
nance of a test suite or a TDD practice. In the beginning it doesn’t make much

• Click HERE to purchase this book now. discuss

The More Detailed Five: SWIFT Tests • 9

http://pragprog.com/titles/nrtest2
http://forums.pragprog.com/forums/nrtest2

difference. When you have only a few methods under test, the difference
between a second per test and a tenth of a second per test is almost imper-
ceptible. The difference between a one-minute suite and a six-second suite
is easier to discern.

From there, the sky’s the limit. I worked in one Rails shop where nobody
really knew how long the tests ran in development because they farmed the
test suite out to a server farm that was more powerful than most production
web servers I’ve seen. This is bad.

Slow test suites hurt you in a variety of ways.

There are startup costs. In the sample TDD session we went through in
Chapter 2, Test-Driven Development Basics, on page ?, and Chapter 3, Test-
Driven Rails, on page ?, we went back and forth to run the tests a lot. In
practice I went back and forth even more frequently. Over the course of writing
that tutorial, I ran the tests dozens of times. Imagine what happens if it takes
even 10 seconds to start a test run. Or a minute, which is not out of the
question for a larger Rails app. I’ve worked on JRuby-based applications that
took well over a minute to start.

TDD is about flow in the moment, and the ability to go back and forth between
running tests and writing code without breaking focus is crucial to being able
to use TDD as a design tool. If you can check Twitter while your tests are
running, you just aren’t going to get the full value of the TDD process.

Tests get slow for a number of reasons, but the most important in a Rails
context are as follows:

• Startup time
• Dependencies within the code that require a lot of objects to be created

to invoke the method under test
• Extensive use of the database or other external services during a test

Not only do large object trees slow down the test at runtime, but setting up
large amounts of data makes writing the tests more labor-intensive. And if
writing the tests becomes burdensome, you aren’t going to do it.

Speeding tests up often means isolating application logic from the Rails stack
so that logic can be tested without loading the entire Rails stack or without
retrieving test data from the database. As with a lot of good testing practices,
this isolation results in more robust code that is easier to change moving
forward.

• 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/nrtest2
http://forums.pragprog.com/forums/nrtest2

Since test speed is so important for successful TDD, throughout the book
we’ll discuss ways to write fast tests. In particular, the discussion of creating
data in Chapter 6, Adding Data to Tests, on page ?, and the discussion of
testing environments in Chapter 15, Running Tests Faster and Running Faster
Tests, on page ?, will be concerned with creating fast tests.

[T]ruthful
A truthful test accurately reflects the underlying code—it passes when the
underlying code works, and fails when it does not. This is easier said than
done.

A frequent cause of brittle tests is targeting assertions at surface features
that might change even if the underlying logic stays the same. The classic
example along these lines is view testing, in which we base the assertion on
the creative text on the page (which will frequently change even though the
basic logic stays the same):

it "shows the project section" do
get :dashboard
expect(response).to have_selector("h2", :text => "My Projects")

end

It seems like a perfectly valid test right up until somebody determines that
“My Projects” is a lame header and decides to go with “My Happy Fun-Time
Projects,” breaking our test. You are often better served by testing something
that’s slightly insulated from surface changes, such as a DOM ID.

it "shows the project section" do
get :dashboard
expect(response).to have_selector("h2#projects")

end

The basic issue here is not limited to view testing. There are areas of model
testing in which testing to a surface feature might be brittle in the face of
trivial changes to the model (as opposed to tests that are brittle in the face
of changes to the test data itself, which we’ve already discussed).

The other side of robustness is not just a test that fails when the logic is good,
but a test that stubbornly continues to pass even if the underlying code is
bad—a tautology, in other words.

Speaking of tautologies, mock objects have their own special robustness
issues. It’s easy to create a tautology by using a mock object. It’s also easy
to create a brittle test because a mock object often creates a hard expectation
of what methods will be called on it. If you add an unexpected method call to

• Click HERE to purchase this book now. discuss

The More Detailed Five: SWIFT Tests • 11

http://pragprog.com/titles/nrtest2
http://forums.pragprog.com/forums/nrtest2

the code being tested, you can get mock-object failures simply because an
unexpected method has been called. I’ve had changes to a login filter cause
hundreds of test failures because mock users going through the login filter
bounced off the new call.

• 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/nrtest2
http://forums.pragprog.com/forums/nrtest2

