
Extracted from:

Take My Money
Accepting Payments on the Web

This PDF file contains pages extracted from Take My Money, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2017 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Take My Money
Accepting Payments on the Web

Noel Rappin

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Katharine Dvorak (editor)
Potomac Indexing, LLC (index)
Liz Welch (copyedit)
Gilson Graphics (layout)
Janet Furlow (producer)

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2017 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-199-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2017

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Disclaimer: This book is intended only as an
informative guide on setting up a financial

transaction website. Information in this book
is general, and the author, editors, and The

Pragmatic Programmers, LLC disclaim all lia-
bility for compliance to federal, state, and local
laws in connection with the use of this book.
This work is sold with the understanding that
the author, editors, and The Pragmatic Pro-

grammers, LLC do not offer legal, financial, or
other professional services. If professional

assistance is required, the services of a com-
petent professional person should be sought.

One day, the theater management gathers our development team to make a
simple request. A survey of our website patrons determined that 20 percent
of them are refusing to give us their credit card information at all. They’d
rather use PayPal to pay us. But we don’t offer PayPal.

We sigh. We knew this day was going to arrive.

Although many payment gateways work more or less like Stripe, which we
set up in Chapter 2, Take the Money, on page ?, PayPal is a popular gateway
that uses an entirely different payment process. I’m tempted to call PayPal
“a more elegant weapon from a more civilized age,” except that it’s less elegant,
and whether the age was more civilized is debatable.

PayPal tries to solve the exact security issue we just solved with our client-
side Stripe solution: allowing users to securely make payments without
sending their credit card information directly to our servers. Where Stripe
uses an Ajax and token mechanism to keep credit card information off our
site, PayPal’s workflow asks users to log in and present their personal infor-
mation to PayPal as part of our site’s checkout process. (PayPal does have a
service that takes credit card information from business sites; however,
because this service isn’t commonly used, and its functionality is similar to
Stripe, I’m not going to discuss it here.)

In this chapter, we’ll set up a PayPal business account and learn how to
accept PayPal as a source for authorizing transactions.

Setting Up a PayPal Account
To accept payments via PayPal, you need a PayPal business account. If you
already have a PayPal personal account, you really want to keep that separate
from your developer account. Here’s how to create a PayPal business account,
at least as of this writing:

Go to the PayPal website.1 Click “Sign up” and then “Open a business account.”
You are directed to the business home page, then click “Get Started.”

Now it gets a little confusing. You have three options: “PayPal Payments
Standard,” “PayPal Payments Pro,” and “Already accepting credit cards?” That
third option, which is usually called “PayPal Express Checkout” and which
for some reason PayPal isn’t identifying as such on the site, is the one we
want. That’s the classic “Check out with PayPal button” experience you are
probably familiar with.

1. https://www.paypal.com

• Click HERE to purchase this book now. discuss

https://www.paypal.com
http://pragprog.com/titles/nrwebpay
http://forums.pragprog.com/forums/nrwebpay

To select the Express Checkout option, click “Learn More” following the
“Already accepting credit cards?” option and then click “Get Express Check-
out.” You are now asked to answer a couple of questions about your business
and enter your business’s URL. Next you are asked for an email address.
When you enter your email address you are taken to a “Sign up for a Business
account” form with that email address filled in. (It seems we could have gotten
to this form in fewer than four pages, but c’est la vie.)

The form asks us to enter a legal name and a legal business name (though
the help text says, “If there isn’t [a business name] then please enter something
that best represents what you are doing”). You need to enter a phone number
and mailing address as well. Then you go to another form for some additional
questions about the business. The next page asks for the last four digits of
your Social Security number and your date of birth. (Non-U.S. residents, I
assume you have something different here.)

Finally, you are able to submit the form and create the account.

The resulting page says, “Welcome to your PayPal Business Account.” You’ll
need to perform additional setup activities to actually take payments, but at
this point we are ready to create a test account for our theater application.

To test PayPal in development mode, we need to create what PayPal calls
“sandbox accounts,” and as far as I can tell, how to do so is completely opaque
from the business account page. But once you are logged into your business
account, point your web browser to the Sandbox Test Accounts page.2 You
should see two automatically created sandbox accounts, as shown in the
figure on page 8.

2. https://developer.paypal.com/developer/accounts

• 8

• Click HERE to purchase this book now. discuss

https://developer.paypal.com/developer/accounts
http://pragprog.com/titles/nrwebpay
http://forums.pragprog.com/forums/nrwebpay

For the purposes of this book, we are using two accounts to test our system.
One account is our fake business account (moneybook-facilitator@noelrappin.com),
and the other account is our fake buyer (moneybook-buyer@noelrappin.com). These
accounts are based on the email you used to set up the business account,
and you’ll start with one business account and one personal account. You
can create more from this page if you want.

With our account set up, we can use it as a source of the API keys we need,
as well as use it to verify and test our transactions.

Accepting PayPal Transactions
As we build our PayPal transaction manager, we’re trying to solve two some-
what separate problems. The immediate problem, of course, is setting up our
application to handle PayPal transactions. The larger problem is how to
gracefully handle changes to our requirements that break the assumptions
the code is already making. In this case, the code we’ve created so far in this
book assumes that all payments use Stripe and take Stripe tokens. As we go
forward, we need to be aware that the way we add PayPal into our code base
could have important consequences for how easy or difficult it is to make
future changes to our business logic.

To accept PayPal for payments, several points in our code need to be adjusted:

• Our shopping cart form needs to allow users to select PayPal as a payment
option, and know that if users select PayPal, they don’t need to fill in
credit card information.

• Once our application receives a user request for PayPal, our application
needs to branch off into a PayPal-specific workflow, rather than the Stripe
workflow we already have set up.

• As part of the PayPal workflow, our application needs to not complete the
entire transaction, but instead tell PayPal about the impending sale. In
doing so, the PayPal gem will communicate back to the PayPal REST API
and give us a one-time URL associated with the new payment.

• Once PayPal returns a one-time URL, our application needs to redirect
users to the URL, where they authenticate in PayPal, choose their payment
method, and jump through whatever other hoops PayPal asks them to.

• When PayPal sends a message back to our servers letting us know that
authentication is successful, our application needs to be able to finish
processing the payment.

• Click HERE to purchase this book now. discuss

Accepting PayPal Transactions • 9

http://pragprog.com/titles/nrwebpay
http://forums.pragprog.com/forums/nrwebpay

From our point of view, the fact that the workflow depends on PayPal sending
a message back to our servers makes working with PayPal in test or develop-
ment mode kind of awkward. In particular, it’s difficult to completely run an
end-to-end test, and it’s also hard to completely test the PayPal workflow
when you need PayPal to call back to localhost:3000. We’ll go over the code to
interact with PayPal first, then talk about how we run this in a developer
environment and test.

Setup and Configuration
PayPal has, I think, at least three separate APIs—it’s hard to tell because the
documentation makes no particular attempt to give a useful overview. In any
case, we’ll be using the REST version of the API, and the associated official
Ruby gem provided by PayPal,3 which we need to add to our Gemfile. The REST
version is the newest version, and the one most likely to be kept up in the
future, although it still has some limitations relative to the older APIs.

gem "paypal-sdk-rest"

The gem comes with a handy install script:

$ rails g paypal:sdk:install
create config/paypal.yml

create config/initializers/paypal.rb

Because we’re using the REST API, we’ll need to create a REST API app to get
credentials. Go to https://developer.paypal.com/developer/applications and then click
“Create App” under “REST API apps.” Give the app a name—we’ll use “Snow
Globe Theater” and our development merchant account we created in the
previous section. Click “Create App” again, and we now have a page with
Sandbox API credentials, including a client ID and secret, which we’ll need
in a moment. In the upper-right corner is a “Sandbox/Live” toggle similar to
Stripe’s (shown in the following figure) that we can use when we go live.

3. https://github.com/paypal/PayPal-Ruby-SDK

• 10

• Click HERE to purchase this book now. discuss

https://developer.paypal.com/developer/applications
https://github.com/paypal/PayPal-Ruby-SDK
http://pragprog.com/titles/nrwebpay
http://forums.pragprog.com/forums/nrwebpay

We now need to add those credentials to our application using the paypal.yml
file. We’ll use a trick similar to what we did to add the Stripe credentials. We’ll
add the actual client_id and client_secret to the .env file and then add them to the
secrets.yml file:

paypal/01/config/secrets.yml
development: &default

admin_name: First User
admin_email: user@example.com
admin_password: changeme
domain_name: example.com
secret_key_base: fc65272c27199652b936c28264bf770f385243f00d91b69f7424ca298466
stripe_publishable_key: <%= ENV["STRIPE_PUBLISHABLE_KEY"] %>
stripe_secret_key: <%= ENV["STRIPE_SECRET_KEY"] %>
paypal_client_id: <%= ENV["PAYPAL_CLIENT_ID"] %>
paypal_client_secret: <%= ENV["PAYPAL_CLIENT_SECRET"] %>
host_name: "6e0fd751.ngrok.com"

test:
<<: *default
secret_key_base: 8489bb21c9497da574dcb42fea4e15d089606d196e367f6f4e166acb281d

As you can see in the previous code, we’ve also added a host_name field, which
will come in handy later on when we need to give PayPal a callback URL.

Next we need to add the environment variables to the file PayPal uses, the
paypal.yml file:

paypal/01/config/paypal.yml
development:

mode: sandbox
client_id: <%= ENV["PAYPAL_CLIENT_ID"] %>
client_secret: <%= ENV["PAYPAL_CLIENT_SECRET"] %>

In the paypal.yml configuration file, the same configuration is duplicated in the
test section. We might want to keep this out of source control, similar to the
secrets.yml file, so that the staging and production versions can be set directly.

• Click HERE to purchase this book now. discuss

Accepting PayPal Transactions • 11

http://media.pragprog.com/titles/nrwebpay/code/paypal/01/config/secrets.yml
http://media.pragprog.com/titles/nrwebpay/code/paypal/01/config/paypal.yml
http://pragprog.com/titles/nrwebpay
http://forums.pragprog.com/forums/nrwebpay

View Update
Our shopping cart view now needs to change to allow users to pick PayPal as
a payment option. As usual, the following code won’t win any design awards,
but it’s functional:

paypal/01/app/views/shopping_carts/show.html.slim
h2 Checkout

h3 Payment Options

= form_tag(payments_path, class: "form-inline", id: "payment-form") do

.paypal
img(src="https://www.paypal.com/en_US/i/logo/PayPal_mark_37x23.gif"

align="left" style="margin-right:7px;")
span(style="font-size:11px; font-family: Arial, Verdana")
| The safer, easier way to pay.

= radio_button_tag(:payment_type,
:paypal, false,
class: "payment-type-radio", id: "paypal_radio")

.credit_card
| Credit Card
= radio_button_tag(:payment_type,

:credit, true,
class: "payment-type-radio", id: "credit_radio")

= hidden_field_tag(:purchase_amount_cents, @cart.total_cost.cents)

#credit-card-info
h3 Credit Card Info

The rest of the credit card information stays as before, subordinate to the
#credit-card-info element, which we’ve added to allow us to easily show or hide
the entire credit card portion of the form.

The use of the specific PayPal logo GIF and tagline is required by PayPal if
you are using ExpressCheckout.4 Otherwise, this code defines a standard set
of radio buttons setting a form variable called payment_type.

We need add a tiny sprinkle of JavaScript to make sure the credit card
information really does hide. This is the JavaScript class formerly known as
StripeForm, with the naming updated to better reflect its new function:

paypal/01/app/assets/javascripts/purchases_cart.es6
class PaymentFormHandler {

constructor() {
this.checkoutForm = new CheckoutForm()
this.initSubmitHandler()

4. https://www.paypal.com/webscr?cmd=xpt/Merchant/merchant/ExpressCheckoutButtonCode-outside

• 12

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/nrwebpay/code/paypal/01/app/views/shopping_carts/show.html.slim
http://media.pragprog.com/titles/nrwebpay/code/paypal/01/app/assets/javascripts/purchases_cart.es6
https://www.paypal.com/webscr?cmd=xpt/Merchant/merchant/ExpressCheckoutButtonCode-outside
http://pragprog.com/titles/nrwebpay
http://forums.pragprog.com/forums/nrwebpay

this.initPaymentTypeHandler()
}

initSubmitHandler() {
this.checkoutForm.form().submit((event) => {
if (!this.checkoutForm.isPayPal()) {

this.handleSubmit(event)
}

})
}

initPaymentTypeHandler() {
this.checkoutForm.paymentTypeRadio().click(() => {
this.checkoutForm.setCreditCardVisibility()

})
}

handleSubmit(event) {
event.preventDefault()
if (this.checkoutForm.isButtonDisabled()) {
return false

}
this.checkoutForm.disableButton()
Stripe.card.createToken(this.checkoutForm.form(), TokenHandler.handle)
return false

}
}

$(() => new PaymentFormHandler())

With this code we’re adding a new handler to fire on a click to one of the radio
buttons and passing the handler to the checkoutForm. We also need to make
sure that the client-side call to the Stripe API doesn’t happen if the customer
selects the PayPal option. You’ll also need to add a few methods to the Check-
outForm class, which actually interacts with the DOM:

paypal/01/app/assets/javascripts/purchases_cart.es6
paymentTypeRadio() { return $(".payment-type-radio") }

selectedPaymentType() { return $("input[name=payment_type]:checked").val() }

creditCardForm() { return $("#credit-card-info") }

isPayPal() { return this.selectedPaymentType() === "paypal" }

setCreditCardVisibility() {
this.creditCardForm().toggleClass("hidden", this.isPayPal())

}

The customer can now select PayPal as a payment option on our form.

• Click HERE to purchase this book now. discuss

Accepting PayPal Transactions • 13

http://media.pragprog.com/titles/nrwebpay/code/paypal/01/app/assets/javascripts/purchases_cart.es6
http://pragprog.com/titles/nrwebpay
http://forums.pragprog.com/forums/nrwebpay

