
Extracted from:

Take My Money
Accepting Payments on the Web

This PDF file contains pages extracted from Take My Money, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2017 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Take My Money
Accepting Payments on the Web

Noel Rappin

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Katharine Dvorak (editor)
Potomac Indexing, LLC (index)
Liz Welch (copyedit)
Gilson Graphics (layout)
Janet Furlow (producer)

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2017 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-199-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2017

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Disclaimer: This book is intended only as an
informative guide on setting up a financial

transaction website. Information in this book
is general, and the author, editors, and The

Pragmatic Programmers, LLC disclaim all lia-
bility for compliance to federal, state, and local
laws in connection with the use of this book.
This work is sold with the understanding that
the author, editors, and The Pragmatic Pro-

grammers, LLC do not offer legal, financial, or
other professional services. If professional

assistance is required, the services of a com-
petent professional person should be sought.

Preface
A few years ago, I started working on my first web application that required serious
payment business logic. The application was a legacy rescue, meaning that the
actual core of the payment section already existed—the application already had
a payment gateway, which is the third-party service that handles the credit card
transaction, and knew how to communicate credit card information.

I was asked to significantly expand the payment logic. You’d think that
because the API communication was already in place, the hard part would
already be done. I certainly thought that but quickly learned otherwise.
Suddenly I had to deal with problems managing inventory, data validation,
refunds, administrators who needed to be able to override user rules, security,
and fraud. I looked around for information about good practice in this area,
and I didn’t find much. The different gateway APIs all have documentation
and tutorials about how to connect to their servers, some of which are quite
helpful; however, I couldn’t find answers to my questions as they related to
the larger context of the application.

So I fell back on general principles of software development. And I made
mistakes. This book comes from somewhere between the things I did right,
the things I did wrong, and the things I wish I had done. It is my hope that
with this book, you will be able to build your payment application with less
stress and without making the same mistakes.

About This Book
When people talk about software design, they often refer to “business logic”
as an abstract blob of complexity that they need to manage. The topics in
this book cover the literal core of business logic: taking payments, providing
a service or good in exchange, managing the flow of money, and reporting
finances. Not only are many of these topics arcane in their own right, but
they also tend to be the locus of the most tangled and complex logic in any
system. And as if that wasn’t enough, people tend to react more strongly to

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/nrwebpay
http://forums.pragprog.com/forums/nrwebpay

bugs or surprises that involve money than they do to bugs that involve, say,
the search algorithm.

A payment application can be really rewarding to build—you can actually see
the return on investment as genuine money (or at least digital bits that we
pretend are money) gets added to your account. But it can also be amazingly
stressful to manage, with security concerns, compliance concerns, and the
fact that your business may be dependent on the features working smoothly.

Over the course of this book we are going to build a robust web application
that takes credit card information in return for goods and services. We will
start by building a shopping cart, which is often dependent on a lot of business
logic but doesn’t have the same dependence on money. We’ll use that oppor-
tunity to talk about general principles of building complex logic without the
added complexity of a third-party payment gateway.

With the shopping cart in place, we’ll next look at the basics of taking a
credit cart payment, first using Stripe as our gateway, then using Stripe’s
client-side authentication, and then again using PayPal. Once we have a
successful payment in the books, you’ll learn about some of the many things
that can go wrong in payment processing and how to work around them. And
after that, you’ll learn how to handle recurring payments in Stripe.

However, taking payments is only part of what you need to do to manage a
fully functional payment application. Once we have payments covered, you’ll
learn about administration and how to bend the rules that sometimes need
to be bent. Your business model may also involve making payments, so you’ll
take a look at that.

Finally, one key difference between financial transactions and many other
kinds of business logic is that financial transactions often require interaction
with the law. As such, we’ll go over three key legal issues that pertain to online
payment applications: taxes, reporting, and compliance.

About You
Inevitably, a technical book needs to make decisions about what languages
that examples will be presented in and what knowledge we expect the readers
will either already have or be willing to learn elsewhere. While I hope that the
principles of design and interaction have value outside the specific tools used,
the code samples are written in a specific set of tools.

This book uses Ruby and Rails for its server-side code and JavaScript ES6
for its client-side code. I’m assuming that you’re already comfortable with

Preface • viii

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/nrwebpay
http://forums.pragprog.com/forums/nrwebpay

Ruby and Rails and you don’t need this book to explain how to build a Rails
project, or how JavaScript syntax works. I am not assuming that you have
any previous familiarity with payment processing.

About the Project
The web application we are going to build over the course of this book is for
a small-town theater company. We’ll pretend we’ve been granted a lucrative
contract to create a website for the Snow Globe Theater, a small theater group
that brings Shakespeare to the wilds of Alaska. And by “lucrative contract,”
I mean that we and the person who runs the theater are old buddies, the
theater desperately needs to start selling tickets online, and our buddy is
calling in some favors.

We’ll use a payment gateway and their API to actually process credit card
payments and transfer the money to us, but that’s only part of the work we
need to do:

• Tickets to our shows are a finite resource, so we have inventory manage-
ment to deal with.

• When purchases are made, we need to notify the user, track the ticket,
and update some totals, so we have workflow issues.

• We’re going to want to keep an eye on sales, which means reporting.

• We have legal issues to contend with, like taxes and compliance laws.

• Sometimes, bad things will happen in our code, so we need to be able to
identify and modify bad data.

• Some of those bad things will be malicious, so we’ll look at security.

• Some of those bad things will be deliberate overrides of our normal logic,
so we need administration.

Over the course of the book we’re going to touch on all of these issues, and by
the end, the Snow Globe Theater will have a robust payment-taking machine.

A Note About the Code
Before we add features to the application, I need to say a few words about
the application itself. The application uses Ruby on Rails and was built up
using Daniel Kehoe’s Rails Composer.1 It uses PostgreSQL as its database.2

1. http://www.railscomposer.com
2. http://www.postgresql.org

• Click HERE to purchase this book now. discuss

About the Project • ix

http://www.railscomposer.com
http://www.postgresql.org
http://pragprog.com/titles/nrwebpay
http://forums.pragprog.com/forums/nrwebpay

The source code for this application is available as a zip file on the book’s
web page,3 which is where you can also find the book’s interactive discussion
forum. The readme.md file in the code has any other information you will need
to start the application, which may include code errata that was discovered
after the book was published. Each directory in the zip file is a complete,
working version of the Rails application in progress. Code samples throughout
the book specify which directory, and therefore, which version of the app,
they are from.

Important code note: The code samples presented in the book focus on the
business logic and interaction with payment gateways. Often, in the interest
of focus, boilerplate code for items like views, controllers, and even sometimes
tests are not displayed in the book. The code samples provided have all the
fully tested code needed to run the site. Unless otherwise noted, each individ-
ual branch is fully tested and has minimal views needed to run the site.

The code samples used throughout this book will show you:

• How to work with the relevant APIs and third-party tools to get something
to work.

• How to mitigate complexity, meaning how to manage the business logic
for long-term issues of readability, changeability, debugging, and so on.

• How to test. This isn’t a book on test-driven development or testing in
general, but you’ll see examples of testing techniques that are particularly
effective in dealing with business logic or third-party libraries. All the code
features in the book were written driven with tests, so even where the
tests in the book aren’t shown, you can still look at the sample application
to see further examples of testing in action.

Handling payment logic is complicated, but it is also concrete and quite liter-
ally rewarding. Let’s go build a website, shall we?

Noel Rappin

noel@noelrappin.com

3. http://www.pragprog.com/book/nrwebpay

Preface • x

• Click HERE to purchase this book now. discuss

http://www.pragprog.com/book/nrwebpay
http://pragprog.com/titles/nrwebpay
http://forums.pragprog.com/forums/nrwebpay

