
Extracted from:

Take My Money
Accepting Payments on the Web

This PDF file contains pages extracted from Take My Money, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2017 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Take My Money
Accepting Payments on the Web

Noel Rappin

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Katharine Dvorak (editor)
Potomac Indexing, LLC (index)
Liz Welch (copyedit)
Gilson Graphics (layout)
Janet Furlow (producer)

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2017 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-199-5
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—January 2017

https://pragprog.com
support@pragprog.com
rights@pragprog.com

Disclaimer: This book is intended only as an
informative guide on setting up a financial

transaction website. Information in this book
is general, and the author, editors, and The

Pragmatic Programmers, LLC disclaim all lia-
bility for compliance to federal, state, and local
laws in connection with the use of this book.
This work is sold with the understanding that
the author, editors, and The Pragmatic Pro-

grammers, LLC do not offer legal, financial, or
other professional services. If professional

assistance is required, the services of a com-
petent professional person should be sought.

Creating Subscription Plans
From Stripe’s perspective, a subscription is a relationship between a plan
and a customer, both of which are data objects defined by the Stripe API. We
need information about both plans and customers in our own database, so
we’ll need analogs of both data objects.

As far as Stripe is concerned, a plan has the following parts:

• An amount, which is what the user is charged per subscription term. In
U.S. currency, the amount is in cents.

• An id, which we’ll store in our database as remote_id to distinguish it from
our local ActiveRecord database ID. This ID is generated by us; Stripe
doesn’t care what it is, as long as it’s unique within our list of plans.

• An interval and interval_count, which specify the length of the term between
user billings. The interval is one of daily, weekly, monthly, or yearly. The
interval count, which defaults to 1, specifies the number of intervals in a
term. If you want to bill the user every 12 days, 3 months, or 7 years, for
whatever reason, you’d specify that information by using the interval_count.

• A human-friendly name, which can be seen on the Stripe administrative
dashboard.

• A number of trial_period_days, which defaults to nil (meaning 0). By setting
this value for a plan, you are stating that all subscribers have this number
of days as a trial period. Effectively, you are delaying the date of their first
payment.

Although you can create plans via the Stripe dashboard, we’re going to create
them from inside our application and send that information to Stripe because
we need to keep track of the plans locally, especially since we want to add
some additional information to plans. First, we need a database migration to
create an ActiveRecord model for plans:

% rails generate model plan remote_id:string name:string \
price:monetize interval:integer interval_count:integer
tickets_allowed:integer ticket_category:string \
status:integer description:text

For our local plan object, we’ve added the attributes tickets_allowed and ticket_cat-
egory to deal with the local logic of managing how many tickets a particular
subscription entitles a user to obtain. Eventually, we’ll have to incorporate
this logic into the payment workflow, because a user with a subscription
won’t need to pay for tickets that are covered.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/nrwebpay
http://forums.pragprog.com/forums/nrwebpay

To use these plan objects to get subscriptions working, we’ll need not just a
model but also a workflow. Right now, however, the only thing we need in the
model is a way to get the remote Stripe object:

subscription/01/app/models/plan.rb
class Plan < ApplicationRecord

enum status: {inactive: 0, active: 1}
enum interval: {day: 0, week: 1, month: 2, year: 3}

monetize :price_cents

def remote_plan
@remote_plan ||= Stripe::Plan.retrieve(remote_id)

end

def end_date_from(date = nil)
date ||= Date.current.to_date
interval_count.send(interval).from_now(date)

end

end

We can use a simple workflow to create plans and coordinate them with Stripe.
All this workflow does is take a bunch of incoming parameters and pass them
along to Stripe, along with some defaults, such as currency:

subscription/01/app/workflows/creates_plan.rb
class CreatesPlan

attr_accessor :remote_id, :name,
:price_cents, :interval,
:tickets_allowed, :ticket_category,
:plan

def initialize(remote_id:, name:,
price_cents:, interval:,
tickets_allowed:, ticket_category:)

@remote_id = remote_id
@name = name
@price_cents = price_cents
@interval = interval
@tickets_allowed = tickets_allowed
@ticket_category = ticket_category

end

• 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/nrwebpay/code/subscription/01/app/models/plan.rb
http://media.pragprog.com/titles/nrwebpay/code/subscription/01/app/workflows/creates_plan.rb
http://pragprog.com/titles/nrwebpay
http://forums.pragprog.com/forums/nrwebpay

def run
remote_plan = Stripe::Plan.create(

id: remote_id, amount: price_cents,
currency: "usd", interval: interval,
name: name)

self.plan = Plan.create(
remote_id: remote_plan.id, name: name,
price_cents: price_cents, interval: interval,
tickets_allowed: tickets_allowed, ticket_category: ticket_category,
status: :active)

end

end

If the Stripe creation is successful, the next step is to create a local plan. If
the Stripe creation isn’t successful, the Stripe gem will throw an exception
and the whole thing will stop.

We’re not wiring this to a controller or anything yet; that’ll be a part of the
administration tool that we will discuss in Chapter 7, The Administration
Experience, on page ?. Odds are you’ll rarely create plans. Let’s start with
a simple Rake task that will create a few plans:

subscription/01/lib/tasks/plan_creation.rake
namespace :theater do

task create_plans: :environment do
plans = [

{remote_id: "orchestra_monthly", plan_name: "Orchestra Monthly",
price_cents: 10_000, interval: "monthly", tickets_allowed: 1,
ticket_category: "Orchestra"},

{remote_id: "balcony_monthly", plan_name: "Balcony Monthly",
price_cents: 60_000, interval: "monthly", tickets_allowed: 1,
ticket_category: "Balcony"},

{remote_id: "vip_monthly", plan_name: "VIP Monthly",
price_cents: 30_000, interval: "monthly", tickets_allowed: 1,
ticket_category: "VIP"}

]
Plan.transaction do
plans.each { |plan_data| CreatesPlan.new(**plan_data).run }

end
end

end

All this does is invoke the CreatesPlan workflow for each of a set of sample plans.

• Click HERE to purchase this book now. discuss

Creating Subscription Plans • 9

http://media.pragprog.com/titles/nrwebpay/code/subscription/01/lib/tasks/plan_creation.rake
http://pragprog.com/titles/nrwebpay
http://forums.pragprog.com/forums/nrwebpay

Creating Subscription Customers
To actually create a subscription and have it start charging, we need to create
a customer object in Stripe and associate it with a plan. Stripe will create an
internal subscription object for that customer-to-plan relationship. So, we
need to coordinate user objects between our database and Stripe’s API.

To register a customer with Stripe, all we need to do is say, “Hey, Stripe, give
me a customer ID” (technically, Stripe::Customer.create). Once the Stripe customer
is created, we can actually see it on the Stripe dashboard—we can even do
some administration there should we choose. It’s our responsibility to coordi-
nate the customer records by adding the Stripe ID to our customer record:

subscription/01/db/migrate/20160730192814_add_stripe_customer_to_user.rb
class AddStripeCustomerToUser < ActiveRecord::Migration[5.0]

def change
add_column :users, :stripe_id, :string

end

end

There are a few things we can do to make the customer object more useful.
First, we can send it a description string and an arbitrary metadata argument.
Now when we browse the users in the Stripe dashboard, we’ll have a little
more context.

Second, we can assign payment sources, such as credit cards, to a customer.
This associates the source with the customer within Stripe so that the cus-
tomer can be charged at a later date. This is useful for subscriptions, since
we’ll need to keep charging the customer over and over again. It’s also useful
for regular payments, because it allows customers to check out without
reentering their credit card information. Associating a card with a user is so
common that the Stripe::Customer.create method can take a credit card as an
argument. This credit card can either be a full set of credit card data or a
token of the kind we’ve already been using.

Finally, we can also add subscription plans to a user by passing the Stripe
ID of the plan. Once a user has a subscription plan and a payment source
associated with that user, Stripe will charge the user and then charge the
user again when the plan interval expires. Associating a user with a plan is
so common that the Stripe::Customer.create method can take a subscription plan
ID as an argument.

• 10

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/nrwebpay/code/subscription/01/db/migrate/20160730192814_add_stripe_customer_to_user.rb
http://pragprog.com/titles/nrwebpay
http://forums.pragprog.com/forums/nrwebpay

For our part, we’re still responsible for managing subscription data locally,
so we need a place to store it:

% rails generate model subscription user:references \
plan:references start_date:date end_date:date \
status:integer payment_method:string remote_id:string

In our database, a subscription combines a user and a plan. The start date
of the subscription, the current end date, and a status are also stored. For
payment, we have a payment method and a remote ID, similar to what pay-
ments have. We’ll continue to update the end date as new payments come in
to move it further into the future.

• Click HERE to purchase this book now. discuss

Creating Subscription Customers • 11

http://pragprog.com/titles/nrwebpay
http://forums.pragprog.com/forums/nrwebpay

