
Extracted from:

Practices of an Agile Developer
Working in the Real World

This PDF file contains pages extracted from Practices of an Agile Developer, published

by the Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragmaticprogrammer.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2005 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragmaticprogrammer.com

Bookshelf
Pragmatic

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragmaticprogrammer.com

Copyright © 2006 Venkat Subramaniam and Andy Hunt.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN 0-9745140-8-X

Printed on acid-free paper.

Fifth printing, January 2009

Version: 2009-3-13

http://www.pragmaticprogrammer.com

TELL, DON’T ASK 121

31 Tell, Don’t Ask
“Don’t trust other objects. After all, they were written by other

people, or even by you last month when you weren’t as smart.

Get the information you need from others, and then do your

own calculations and make your own decisions. Don’t give up

control to others!”

“Procedural code gets information and then makes decisions. Object-

oriented code tells objects to do things.” Alec Sharp [Sha97] hit the nail

on the head with that observation. But it’s not limited to the object-

oriented paradigm; any agile code should follow this same path.

As the caller, you should not make decisions based on the state of the

called object and then change the state of that object. The logic you are

implementing should be the called object’s responsibility, not yours.

For you to make decisions outside the object violates its encapsulation

and provides a fertile breeding ground for bugs.

David Bock illustrates this well with the tale of the paperboy and the

wallet.9 Suppose the paperboy comes to your door, requesting his pay-

ment for the week. You turn around and let the paperboy pull your

wallet out of your back pocket, take the two bucks (you hope), and put

the wallet back. The paper boy then drives off in his shiny new Jaguar.

The paperboy, as the “caller” in this transaction, should simply tell the

customer to pay $2. There’s no inquiry into the customer’s financial

state, or the condition of the wallet, and no decision on the paperboy’s

part. All of that is the customer’s responsibility, not the paperboy’s.

Agile code should work the same way.

Keep commands

separate from queries

A helpful side technique related to Tell, Don’t

Ask is known as command-query separa-

tion [Mey97]. The idea is to categorize each of

your functions and methods as either a com-

mand or a query and document them as such in the source code (it

helps if all the commands are grouped together and all the queries are

grouped together).

A routine acting as a command will likely change the state of the object

and might also return some useful value as a convenience. A query just

9. http://www.javaguy.org/papers/demeter.pdf

CLICK HERE to purchase this book now.

http://www.javaguy.org/papers/demeter.pdf
http://www.pragprog.com/titles/pad

TELL, DON’T ASK 122

Beware of Side Effects

Have you ever heard someone say, “Oh—we’re just calling that
method because of its side effects.” That’s pretty much on par
with defending an odd bit of architecture by saying, “Well, it’s
like that because it used to....”

Statements such as these are clear warning signs of a fragile,
not agile, design.

Relying on side effects or living with an increasingly twisted
design that just doesn’t match reality are urgent indications you
need to redesign and refactor the code.

gives you information about the state of the object and does not modify

the externally visible state of the object.

That is, queries should be side effect free as seen from the outside world

(you may want to do some pre-calculation or caching behind the scenes

as needed, but fetching the value of X in the object should not change

the value of Y).

Mentally framing methods as commands helps reinforce the idea of Tell,

Don’t Ask. Additionally, keeping queries as side effect free is just good

practice anyway, because you can use them freely in unit tests, call

them from assertions, or from the debugger, all without changing the

state of the application.

Explicitly considering queries separately from commands also gives you

the opportunity to ask yourself why you’re exposing a particular piece

of data. Do you really need to do so? What would a caller do with it?

Perhaps there should be a related command instead.

Tell, don’t ask. Don’t take on another object’s or compo-

nent’s job. Tell it what to do, and stick to your own job.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pad

TELL, DON’T ASK 123

What It Feels Like

Smalltalk uses the concept of “message passing” instead of method

calls. Tell, Don’t Ask feels like you’re sending messages, not calling

functions.

Keeping Your Balance

• Objects that are just giant data holders are suspect. Sometimes

you need such things, but maybe not as often as you think.

• It’s OK for a command to return data as a convenience (it’d be nice

to be able to retrieve that data separately, too, if that’s needed).

• It’s not OK for an innocent-looking query to change the state of an

object.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pad

SUBSTITUTE BY CONTRACT 124

32 Substitute by Contract
“Deep inheritance hierarchies are great. If you need functional-

ity from some other class, just inherit from it! And don’t worry

if your new class breaks things; your callers can just change

their code. It’s their problem, not yours.”

A key way to keep systems flexible is by letting new code take the place

of existing code without the existing code knowing the difference. For

instance, you might need to add a new type of encryption to a communi-

cations infrastructure or implement a better search algorithm using the

same interface. As long as the interface remains the same, you are free

to change the implementation without changing any other code. That’s

easier said than done, however, so we need a little bit of guidance to do

it correctly. For that, we’ll turn to Barbara Liskov.

Liskov’s Substitution principle [Lis88] tells us that “Any derived class

object must be substitutable wherever a base class object is used, with-

out the need for the user to know the difference.” In other words, code

that uses methods in base classes must be able to use objects of derived

classes without modification.

What does that mean exactly? Suppose you have a simple method in

a class that sorts a list of strings and returns a new list. You might

invoke it like this:

utils = new BasicUtils();

...

sortedList = utils.sort(aList);

Now suppose you subclass the BasicUtils class and make a new sort()

method that uses a much better, faster sort algorithm:

utils = new FasterUtils();

...

sortedList = utils.sort(aList);

Note the call to sort() is the same; a FasterUtils object is perfectly sub-

stitutable for a BasicUtils object. The code that calls utils.sort() could be

handed a utils of either type, and it would work fine.

But if you made a subclass of BasicUtils that changed the meaning of

sort—returning a list that sorted in reverse order, perhaps—then you’ve

grossly violated the Substitution principle.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pad

SUBSTITUTE BY CONTRACT 125

Inheritence Delegation

Base Class

methodA()

Called Class

Called Class

methodA() →

Delegate Class

methodA()

1

Figure 6.3: Delegation versus inheritance

To comply with the Substitution principle, your derived class services

(methods) should require no more, and promise no less, than the corre-

sponding methods of the base class; it needs to be freely substitutable.

This is an important consideration when designing class inheritance

hierarchies.

Inheritance is one of the most abused concepts in OO modeling and

programming. If you violate the Substitution principle, your inheritance

hierarchy may still provide code reusability but will not help with exten-

sibility. The user of your class hierarchy may now have to examine the

type of the object it is given in order to know how to handle it. As new

classes are introduced, that code has to constantly be reevaluated and

revised. That’s not an agile approach.

But help is available. Your compiler may help you enforce the LSP, at

least to some extent. For example, consider method access modifiers.

In Java, the overriding method’s access modifier must be the same or

more lenient than the modifier of the overridden method. That is, if

the base method is protected, the derived overriding method must be

protected or public. In C# and VB .NET, the access protection of the

overridden method and the overriding method are required to be the

same.

Consider a class Base with a method findLargest() that throws an Index-

OutOfRangeException. Based on the documentation, a user of this class

will prepare to catch that exception if thrown. Now, assume you inherit

the class Derived from Base, override the method findLargest(), and in the

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pad

SUBSTITUTE BY CONTRACT 126

new method throw a different exception. Now, if an instance of Derived is

used by code expecting an object of class Base, that code may receive an

unexpected exception. Your Derived class is not substitutable wherever

Base is used. Java avoids this problem by not allowing you to throw any

new kind of checked exceptions from the overriding methods, unless

the exception itself derives from one of the exception classes thrown

from the overridden method (of course, for unchecked exceptions such

as RuntimeException, the compiler won’t help you).

Unfortunately, Java violates the Substitution principle as well. The

java.util.Stack class derives from the java.util.Vector class. If you (inad-

vertently) send an object of Stack to a method that expects an instance

of Vector, the elements in the Stack can be inserted or removed in an

order inconsistent with its intended behavior.

Use inheritance

for is-a;

use delegation

for has-a or uses-a

When using inheritance, ask yourself whether

your derived class is substitutable in place of

the base class. If the answer is no, then ask

yourself why you are using inheritance. If the

answer is to reuse code in the base class when

developing your new class, then you should

probably use composition instead. Composition is where an object of

your class contains and uses an object of another class, delegating

responsibilities to the contained object (this technique is also known

as delegation).

Figure 6.3, on the previous page shows the difference. Here, a caller

invoking methodA() in Called Class will get it automatically from Base

Class via inheritance. In the delegation model, the Called Class has to

explicitly forward the method call to the contained delegate.

When should you use inheritance versus delegation?

• If your new class can be used in place of the existing class and

the relationship between them can be described as is-a, then use

inheritance.

• If your new class needs to simply use the existing class and the

relationship can be described as has-a or uses-a, then use dele-

gation.

You may argue that in the case of delegation you have to write lots

of tiny methods that route method calls to the contained object. In

inheritance, you don’t need these, because the public methods of the

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pad

SUBSTITUTE BY CONTRACT 127

base class are readily available in the derived class. By itself, that’s not

a good enough reason to use inheritance.

You can write a good script or a nice IDE macro to help you write these

few lines of code or use a better language/environment that supports a

more automatic form of delegation (Ruby does this nicely, for instance).

Extend systems by substituting code. Add and enhance

features by substituting classes that honor the interface

contract. Delegation is almost always preferable to inher-

itance.

What It Feels Like

It feels sneaky; you can sneak a replacement component into the code

base without any of the rest of the code knowing about it to achieve

new and improved functionality.

Keeping Your Balance

• Delegation is usually more flexible and adaptable than inheri-

tance.

• Inheritance isn’t evil, just misunderstood.

• If you aren’t sure what an interface really promises or requires, it

will be hard to provide an implementation that honors it.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pad

You might get the impression that

experienced woodworkers never make

mistakes. I can assure you that isn’t true.

Pros simply know how to salvage

their goofs.

Jeff Miller, furniture maker and

author
Chapter 7

Agile Debugging
Even on the most talented agile projects, things will go wrong. Bugs,

errors, defects, mistakes—whatever you want to call them, they will

happen.

The real problem with debugging is that it is not amenable to a time

box. You can time box a design meeting and decide to go with the best

idea at the end of some fixed time. But with a debugging session, an

hour, a day, or a week may come and go and find you no closer to

finding and fixing the problem.

You really can’t afford that sort of open-ended exposure on a project.

So, we have some techniques that might help, from keeping track of

previous solutions to providing more helpful clues in the event of a

problem.

To reuse your knowledge and effort better, it can help to Keep a Solu-

tions Log, and we’ll see how on the following page. When the compiler

warns you that something is amiss, you need to assume that Warnings

Are Really Errors and address them right away (that’s on page 132).

It can be very hard—even impossible—to track down problems in the

middle of an entire system. You have a much better chance at find-

ing the problem when you Attack Problems in Isolation, as we’ll see

on page 136. When something does go wrong, don’t hide the truth.

Unlike some government cover-up, you’ll want to Report All Exceptions,

as described on page 139. Finally, when you do report that something

has gone awry, you have to be considerate of users, and Provide Useful

Error Messages. We’ll see why on page 141.

KEEP A SOLUTIONS LOG 129

33 Keep a Solutions Log
“Do you often get that déjà vu feeling during development? Do

you often get that déjà vu feeling during development? That’s

OK. You figured it out once. You can figure it out again.”

Facing problems (and solving them) is a way of life for developers. When

a problem arises, you want to solve it quickly. If a similar problem

occurs again, you want to remember what you did the first time and

fix it more quickly the next time. Unfortunately, sometimes you’ll see a

problem that looks the same as something you’ve seen before but can’t

remember the fix. This happens to us all the time.

Can’t you just search the Web for an answer? After all, the Internet

has grown to be this incredible resource, and you might as well put

that to good use. Certainly searching the Web for an answer is bet-

ter than wasting time in isolated efforts. However, it can be very time-

consuming. Sometimes you find the answers you’re looking for; other

times, you end up reading a lot of opinions and ideas instead of real

solutions. It might be comforting to see how many other developers

have had the same problem, but what you need is a solution.

Don’t get burned twice
To be more productive than that, maintain

a log of problems faced and solutions found.

When a problem appears, instead of saying,

“Man, I’ve seen this before, but I have no clue how I fixed it,” you can

quickly look up the solution you’ve used in the past. Engineers have

done this for years: they call them daylogs.

You can choose any format that suits your needs. Here are some items

that you might want to include in your entries:

• Date of the problem

• Short description of the problem or issue

• Detailed description of the solution

• References to articles, and URLs, that have more details or related

information

• Any code segments, settings, and snapshots of dialogs that may

be part of the solution or help you further understand the details

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pad

KEEP A SOLUTIONS LOG 130

04/01/2006: Installed new version of Qvm (2.1.6),
which fixed problem where cache entries never got
deleted.

04/27/2006: If you use KQED version 6 or earlier, you
have to rename the base directory to _kqed6 to avoid
a conflict with the in-house Core library.

Figure 7.1: Example of a solutions log entry, with hyperlinks

Keep the log in a computer-searchable format. That way you can per-

form a keyword search to look up the details quickly. Figure 7.1 shows

a simple example, with hyperlinks to more information.

When you face a problem and you can’t find the solution in your log,

remember to update your log with the new details as soon as you do

figure out a solution.

Even better than maintaining a log is sharing it with others. Make it

part of your shared network drive so others can use it. Or create a

Wiki, and encourage other developers to use it and update it.

Maintain a log of problems and their solutions. Part of

fixing a problem is retaining details of the solution so you

can find and apply it later.

What It Feels Like

Your solutions log feels like part of your brain. You can find details on

particular issues and also get guidance on similar but different issues.

Keeping Your Balance

• You still need to spend more time solving problems than docu-

menting them. Keep it light and simple; it doesn’t have to be pub-

lication quality.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pad

KEEP A SOLUTIONS LOG 131

• Finding previous solutions is critical; use plenty of keywords that

will help you find an entry when needed.

• If a web search doesn’t find anyone else with the same problem,

perhaps you’re using something incorrectly.

• Keep track of the specific version of the application, framework

or platform where the problem occurred. The same problem can

manifest itself differently on different platforms/versions.

• Record why the team made an important decision. That’s the sort

of detail that’s hard to remember six to nine months later, when

the decision needs to be revisited and recriminations fill the air.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pad

WARNINGS ARE REALLY ERRORS 132

34 Warnings Are Really Errors
“Compiler warnings are just for the overly cautious and pedan-

tic. They’re just warnings after all. If they were serious, they’d

be errors, and you couldn’t compile. So just ignore them, and

let ’er rip.”

When your program has a compilation error, the compiler or build tool

refuses to produce an executable. You don’t have a choice—you have to

fix the error before moving on.

Warnings, unfortunately, are not like that. You can run the program

that generates compiler warnings if you want. What happens if you

ignore warnings and continue to develop your code? You’re sitting on

a ticking time bomb, one that will probably go off at the worst possible

moment.

Some warnings are benign by-products of a fussy compiler (or inter-

preter), but others are not. For instance, a warning about a variable

not being used in the code is probably benign but may also allude to

the use of some other incorrect variable.

At a recent client site, Venkat found more than 300 warnings in an

application in production. One of the warnings that was being ignored

by the developers said this:

Assignment in conditional expression is always constant;

did you mean to use == instead of = ?

The offending code was something like this:

if (theTextBox.Visible = true)

...

In other words, that if will always evaluate as true, regardless of the

hapless theTextBox variable. It’s scary to see genuine errors such as this

slip through as warnings and be ignored.

Consider the following C# code:

public class Base

{

public virtual void foo()

{

Console.WriteLine("Base.foo");

}

}

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pad

WARNINGS ARE REALLY ERRORS 133

public class Derived : Base

{

public virtual void foo()

{

Console.WriteLine("Derived.foo");

}

}

class Test

{

static void Main(string[] args)

{

Derived d = new Derived();

Base b = d;

d.foo();

b.foo();

}

}

When you compile this code using the default Visual Studio 2003

project settings, you’ll see the message “Build: 1 succeeded, 0 failed,

0 skipped” at the bottom of the Output window. When you run the

program, you’ll get this output:

Derived.foo

Base.foo

But this isn’t what you’d expect. You should see both the calls to foo()

end up in the Derived class. What went wrong? If you examine the Out-

put window closely, you’ll find a warning message:

Warning. Derived.foo hides inherited member Base.foo

To make the current member override that implementation,

add the override keyword. Otherwise, you'd add the new keyword.

This was clearly an error—the code should use override instead of virtual

in the Derived class’s foo() method.1 Imagine systematically ignoring

warnings like this in your code. The behavior of your code becomes

unpredictable, and its quality plummets.

You might argue that good unit tests will find these problems. Yes,

they will help (and you should certainly use good unit tests). But if the

compiler can detect this kind of problem, why not let it? It’ll save you

both some time and some headaches.

1. And this is an insidious trap for former C++ programmers; the program would work

as expected in C++.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pad

WARNINGS ARE REALLY ERRORS 134

Find a way to tell your compiler to treat warnings as errors. If your

compiler allows you to fine-tune warning reporting levels, turn that

knob all the way up so no warnings are ignored. GCC compilers support

the -Werror flag, for example, and in Visual Studio, you can change the

project settings to treat warnings as errors.

That is the least you should do on a project. Unfortunately, if you go

that route, you will have to do it on each project you create. It’d be nice

to enable that more or less globally.

In Visual Studio, for instance, you can modify the project templates

(see .NET Gotchas [Sub05] for details) so any project you create on your

machine will have the option set, and in the current version of Eclipse,

you can change these settings under Window → Preferences → Java →

Compiler → Errors/Warnings. If you’re using other languages or IDEs,

take time to find how you can treat warnings as errors in them.

While you’re modifying settings, set those same flags in the continuous

integration tool that you use on your build machine. (For details on

continuous integration, see Practice 21, Different Makes a Difference,

on page 87.) This small change can have a huge impact on the quality

of the code that your team is checking into the source control system.

You want to get all of this set up right as you start the project; suddenly

turning warnings on partway through a project may be too overwhelm-

ing to handle.

Just because your compiler treats warnings lightly doesn’t mean you

should.

Treat warnings as errors. Checking in code with warn-

ings is just as bad as checking in code with errors or code

that fails its tests. No checked-in code should produce any

warnings from the build tools.

What It Feels Like

Warnings feel like...well, warnings. They are warning you about some-

thing, and that gets your attention.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pad

WARNINGS ARE REALLY ERRORS 135

Keeping Your Balance

• Although we’ve been talking about compiled languages here, inter-

preted languages usually have a flag that enables run-time warn-

ings. Use that flag, and capture the output so you can identify—

and eliminate—the warnings.

• Some warnings can’t be stopped because of compiler bugs or prob-

lems with third-party tools or code. If it can’t be helped, don’t

waste further time on it. But this shouldn’t happen very often.

• You can usually instruct the compiler to specifically suppress

unavoidable warnings so you don’t have to wade through them

to find genuine warnings and errors.

• Deprecated methods have been deprecated for a reason. Stop

using them. At a minimum, schedule an iteration where they (and

their attendant warning messages) can be removed.

• If you mark methods you’ve written as deprecated, document what

current users should do instead and when the deprecated meth-

ods will be removed altogether.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pad

ATTACK PROBLEMS IN ISOLATION 136

35 Attack Problems in Isolation
“Stepping line by line through a massive code base is pretty

scary. But the only way to debug a significant problem is to

look at the entire system. All at once. After all, you don’t know

where the problem may be, and that’s the only way to find it.”

One of the positive side effects of unit testing (Chapter 5, Agile Feed-

back, on page 76) is that it forces you to layer your code. To make your

code testable, you have to untangle it from its surroundings. If your

code depends on other modules, you’ll use mock objects to isolate it

from those other modules. In addition to making your code robust, it

makes it easier to locate problems as they arise.

Otherwise, you may have problems figuring out where to even start.

You might start by using a debugger, stepping through the code and

trying to isolate the problem. You may have to go through a few forms

or dialogs before you can get to the interesting part, and that makes

it hard to reach the problem area. You may find yourself struggling

with the entire system at this point, and that just increases stress and

reduces productivity.

Large systems are complicated—many factors are involved in the way

they execute. While working with the entire system, it’s hard to separate

the details that have an effect on your particular problem from the ones

that don’t.

The answer is clear: don’t try to work with the whole system at once.

Separate the component or module you’re having problems with from

the rest of the code base for serious debugging. If you have unit tests,

you’re there already. Otherwise, you’ll have to get creative.

For instance, in the middle of a time-critical project (aren’t they all?),

Fred and George found themselves facing a major data corruption prob-

lem. It took a lot of work to find what was wrong, because their team

didn’t separate the database-related code from the rest of the appli-

cation. They had no way to report the problem to the vendor—they

certainly couldn’t email the entire source code base to them!

So, they developed a small prototype that exhibited similar symptoms.

They sent this to the vendor as an example and asked for their expert

opinion. Working with the prototype helped them understand the issues

more clearly.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pad

ATTACK PROBLEMS IN ISOLATION 137

Plus, if they weren’t able to reproduce the problem in the prototype,

it would have shown them examples of code that actually worked and

would have helped them isolate the problem.

Prototype to isolate
The first step in identifying complex problems

is to isolate them. You wouldn’t try to fix an

airplane engine in midair, so why would you

diagnose a hard problem in a part or component of your application

while it’s working inside the entire application? It’s easier to fix engines

when they’re out of the aircraft and on the workbench. Similarly, it’s

easier to fix problems in code if you can isolate the module causing the

problem.

But many applications are written in a way that makes isolation dif-

ficult. Application components or parts may be intertwined with each

other; try to extract one, and all the rest come along too.2 In these

cases, you may be better off spending some time ripping out the code

that is of concern and creating a test bed on which to work.

Attacking a problem in isolation has a number of advantages: by isolat-

ing the problem from the rest of the application, you are able to focus

directly on just the issues that are relevant to the problem. You can

change as much as you need to get to the bottom of the problem—you

aren’t dealing with the live application. You get to the problem quicker

because you’re working with the minimal amount of relevant code.

Isolating problems is not just something you do after the application

ships. Isolation can help us when prototyping, debugging, and testing.

Attack problems in isolation. Separate a problem area

from its surroundings when working on it, especially in a

large application.

What It Feels Like

When faced with a problem that you have to isolate, it feels like search-

ing for a needle in a tea cup, not a needle in a haystack.

2. This is affectionately known as the “Big Ball of Mud” design antipattern.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pad

ATTACK PROBLEMS IN ISOLATION 138

Keeping Your Balance

• If you separate code from its environment and the problem goes

away, you’ve helped to isolate the problem.

• On the other hand, if you separate code from its environment

and the problem doesn’t go away, you’ve still helped to isolate

the problem.

• It can be useful to binary chop through a problem. That is, divide

the problem space in half, and see which half contains the prob-

lem. Then divide that half in half again, and repeat.

• Before attacking your problem, consult your log (see Practice 33,

Keep a Solutions Log, on page 129).

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pad

REPORT ALL EXCEPTIONS 139

36 Report All Exceptions
“Protect your caller from weird exceptions. It’s your job to han-

dle it. Wrap everything you call, and send your own exception

up instead—or just swallow it.”

Part of any programming job is to think through how things should

work. But it’s much more profitable to think about what happens when

things don’t work—when things don’t go as planned.

Perhaps you’re calling some code that might throw an exception; in

your own code you can try to handle and recover from that failure. It’s

great if you can recover and continue with the processing without your

user being aware of any problem. If you can’t recover, it’s great to let

the user of your code know exactly what went wrong.

But that doesn’t always happen. Venkat found himself quite frustrated

with a popular open-source library (which will remain unnamed here).

When he invoked a method that was supposed to create an object, he

received a null reference instead. The code was small, isolated, and sim-

ple enough, so not a whole lot could’ve been messed up at the code

level. Still, he had no clue what went wrong.

Fortunately it was open source, so he downloaded the source code and

examined the method in question. It in turn called another method, and

that method determined that some necessary components were missing

on his system. This low-level method threw an exception containing

information to that effect. Unfortunately, the top-level method quietly

suppressed that exception with an empty catch block and returned a

null instead. The code Venkat had written had no way of knowing what

had happened; only by reading the library code could he understand

the problem and finally get the missing component installed.

Checked exceptions, such as those in Java, force you to catch or prop-

agate exceptions. Unfortunately, some developers, maybe temporarily,

catch and ignore exceptions just to keep the compiler from complaining.

This is dangerous—temporary fixes are often forgotten and end up in

production code. You must handle all exceptions and recover from the

failures if you can. If you can’t handle it yourself, propagate it to your

method’s caller so it can take a stab at handling it (or gracefully com-

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pad

REPORT ALL EXCEPTIONS 140

municate the information about the problem to users; see Practice 37,

Provide Useful Error Messages, on the next page).

Sounds pretty obvious, doesn’t it? Well, maybe it’s not as obvious as

you think. A story in the news not long ago talked about a major failure

of a large airline reservations system. The system crashed, grounding

airplanes, stranding thousands of passengers, and snarling the entire

air transportation system for days. The cause? A single unchecked SQL

exception in an application server.

Maybe you’d enjoy the fame of being mentioned on CNN, but probably

not like that.

Handle or propagate all exceptions. Don’t suppress them,

even temporarily. Write your code with the expectation that

things will fail.

What It Feels Like

You feel you can rely on getting an exception when something bad hap-

pens. There are no empty exception handlers.

Keeping Your Balance

• Determining who is responsible for handling an exception is part

of design.

• Not all situations are exceptional.

• Report an exception that has meaning in the context of this code.

A NullPointerException is pretty but just as useless as the null object

described earlier.

• If the code writes a running debug log, issue a log message when

an exception is caught or thrown; this will make tracking them

down much easier.

• Checked exceptions can be onerous to work with. No one wants to

call a method that throws thirty-one different checked exceptions.

That’s a design error: fix it, don’t patch over it.

• Propagate what you can’t handle.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pad

PROVIDE USEFUL ERROR MESSAGES 141

37 Provide Useful Error Messages
“Don’t scare the users, or even other programmers. Give them

a nice, sanitized error message. Use something comforting like

‘User Error. Replace, and Continue.”’

As applications are deployed and put into use in the real world, things

will fail from time to time. A computation module may fail, for instance,

or the connection to a database server may be lost. When you can’t

honor a user’s request, you want to handle it gracefully.

When such an error occurs, is it enough to pop up a graceful, apolo-

getic message to the user? Sure, a general message that informs the

user about a failure is better than the application misbehaving or dis-

appearing because of a crash (which leaves the user confused and won-

dering what happened). However, a message along the lines of “some-

thing went wrong” doesn’t help your team diagnose the problem. When

users call your support team to report the problem, you’d like them to

report a lot of good information so you can identify the problem quickly.

Unfortunately, with just a general error message, they won’t be able to

tell you much.

The most common solution to this issue is logging: when something

goes wrong, have the application log details of the error. In the most

rudimentary approach, the log is maintained as a text file. But you

might instead publish to a systemwide event log. You can use tools to

browse through the logs, generate an RSS feed of all logged messages,

and so on.

While logging is useful, it is not sufficient: it might give you, the devel-

oper, information if you dig for it, but it doesn’t help the hapless user. If

you show them something like the message in Figure 7.2, on the follow-

ing page, they are left clueless—they don’t know what they did wrong,

what they might do to work around it, or even what to report when they

call tech support.

If you pay attention, you may find early warning signs of this problem

during development. As a developer, you’ll often pretend to be a user

in order to test new functionality. If error messages are hard for you to

understand or are not helpful to locate problems, imagine how hard it

will be for your real users and your support team.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pad

PROVIDE USEFUL ERROR MESSAGES 142

Figure 7.2: Exception message that doesn’t help

For example, suppose the logon UI calls the middle tier of your appli-

cation, which makes a request to its database tier. The database tier

throws an exception because it couldn’t connect to a database. The

middle tier then wraps that exception into its own exception and passes

that up. What should your UI tier do? It should at least let the user

know there was a system error, and it’s not due to any user input.

So the user calls up and tells you that he can’t log on. How can you

locate the actual problem? The log file may have hundreds of entries,

and it’s going to be hard to find the relevant details.

Instead, provide more details right in the message you give the user.

Imagine being able to see exactly which SQL query or stored procedure

messed up: this can make the difference between finding the prob-

lem and moving ahead versus wasting hours trying to find the problem

blindly. On the other hand, providing the specific details about what

went wrong during database connectivity doesn’t help the users once

the application is in production. It may well scare the living daylights

out of some users.

On one hand, you want to provide users with a clean, high-level expla-

nation of what went wrong so that they can understand the problem

and perhaps pursue a workaround. On the other hand, you want to

give them all the low-level, nitty-gritty details of the error so that you

can identify the real problem in the code.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pad

PROVIDE USEFUL ERROR MESSAGES 143

Figure 7.3: An exception message with link for more details

Here’s one way to reconcile those disparate goals: Figure 7.3 shows

a high-level message that appears when something goes wrong. This

error message, instead of being just simple text, contains a hyperlink.

The user, the developers, or the testers can then follow this link to get

more information, as shown in Figure 7.4, on the following page.

When you follow the link, you’ll see details about the exception (and all

the nested exceptions). During development, you may want to simply

display these details by default. When the application goes into pro-

duction, however, you’ll probably want to modify this so that instead of

displaying these gory details directly to the users, you provide a link or

some sort of handle or entry into your error log. Your support team can

ask the user to click the error message and read the handle so they can

quickly find the specific details in the log. In the case of a stand-alone

system, clicking the link might email the details of what went wrong

directly to your support department.

The information you’ve logged may contain not only the details about

what went wrong but also a snapshot of the state of the system as well

(the session state in a web application, for example).3

3. Some security-sensitive information should not be revealed or even logged; this

includes items such as passwords, account numbers, etc.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pad

PROVIDE USEFUL ERROR MESSAGES 144

Figure 7.4: Complete details displayed for debugging

Using these details, your support group can re-create the situation that

caused the problem, which will really help efforts to find and fix the

issue.

Error reporting has a big impact on developer productivity as well

as your eventual support costs. If finding and fixing problems during

development is frustrating, take it as an early sign that you need a

more proactive approach to error reporting. Debugging information is

precious and hard to come by. Don’t throw it away.

Present useful error messages. Provide an easy way to find

the details of errors. Present as much supporting detail as

you can about a problem when it occurs, but don’t bury the

user with it.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pad

PROVIDE USEFUL ERROR MESSAGES 145

Distinguishing Types of Errors

Program defects. These are genuine bugs, such as NullPointer-

Exception, missing key values, etc. There’s nothing the user
or system administrators can do.

Environmental problems. This category includes failure to
connect to a database or a remote web service, a full
disk, insufficient permissions, and that sort of thing. The pro-
grammer can’t do anything about it, but the user might
be able to get around it, and the system administrator cer-
tainly should be able to fix it, if you give them sufficiently
detailed information.

User error. No need to bother the programmer or the system
administrators about this; the user just needs to try again,
after you tell them what they did wrong.

By keeping track of what kind of error you are reporting, you
can provide more appropriate advice to your audience.

What It Feels Like

Error messages feel useful and helpful. When a problem arises, you can

hone in on the precise details of what went wrong, where.

Keeping Your Balance

• An error message that says “File Not Found” is not helpful by itself.

“Can’t open /andy/project/main.yaml for reading” is much

more informative.

• You don’t have to wait for an exception to tell you something went

wrong. Use assertions at key points in the code to make sure

everything is correct. When an assertion fails, provide the same

good level of detail you would for exception reporting.

• Providing more information should not compromise security, pri-

vacy, trade secrets, or any other sensitive information (this is espe-

cially true for web-based applications).

• The information you provide the user might include a key to help

you find the relevant section in a log file or audit trail.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pad

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style, and continue to garner awards

and rave reviews. As development gets more and more difficult, the Pragmatic Program-

mers will be there with more titles and products to help programmers stay on top of their

game.

Visit Us Online
Practices of an Agile Developer Home Page

pragmaticprogrammer.com/titles/pad

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

pragmaticprogrammer.com/updates

Be notified when updates and new books become available.

Join the Community

pragmaticprogrammer.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

pragmaticprogrammer.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragmaticprogrammer.com/titles/pad.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

pragmaticprogrammer.com/titles/pad
www.pragmaticprogrammer.com/catalog

