
Extracted from:

Practices of an Agile Developer
Working in the Real World

This PDF file contains pages extracted from Practices of an Agile Developer, published

by the Pragmatic Bookshelf. For more information or to purchase a paperback or PDF

copy, please visit http://www.pragmaticprogrammer.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2005 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragmaticprogrammer.com

Bookshelf
Pragmatic

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragmaticprogrammer.com

Copyright © 2006 Venkat Subramaniam and Andy Hunt.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN 0-9745140-8-X

Printed on acid-free paper.

Fifth printing, January 2009

Version: 2009-3-13

http://www.pragmaticprogrammer.com

No matter how far down the wrong road

you’ve gone, turn back.

Turkish proverb

Chapter 1

Agile Software Development
That Turkish proverb above is both simple and obvious—you’d think

it would be a guiding force for software development. But all too often,

developers (including your humble authors) continue down the wrong

road in the misguided hope that it will be OK somehow. Maybe it’s

close enough. Maybe this isn’t really as wrong a road as it feels. We

might even get away with it now and then, if creating software were a

linear, deterministic process—like the proverbial road. But it’s not.

Instead, software development is more like surfing—it’s a dynamic,

ever-changing environment. The sea itself is unpredictable, risky, and

there may be sharks in those waters.

But what makes surfing so challenging is that every wave is different.

Each wave takes its unique shape and behavior based on its locale—a

wave in a sandy beach is a lot different from a wave that breaks over a

reef, for instance.

In software development, the requirements and challenges that come

up during your project development are your waves—never ceasing and

ever-changing. Like the waves, software projects take different shapes

and pose different challenges depending on your domain and applica-

tion. And sharks come in many different guises.

Your software project depends on the skills, training, and competence

of all the developers on the team. Like a successful surfer, a successful

developer is the one with (technical) fitness, balance, and agility. Agility

in both cases means being able to quickly adapt to the unfolding situ-

ation, whether it’s a wave that breaks sooner than expected or a design

that breaks sooner than expected.

CHAPTER 1. AGILE SOFTWARE DEVELOPMENT 2

The Agile Manifesto

We are uncovering better ways of developing software by
doing it and helping others do it. Through this work we have
come to value:

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

That is, while there is value in the items on the right, we value
the items on the left more.

Copyright 2001, the Agile Manifesto authors

See agilemanifesto.org for more information.

The Spirit of Agility

So what is agility, exactly, and where did this whole agile software devel-

opment movement come from?

In February 2001, seventeen interested persons (including Andy) got

together in Snowbird, Utah, to discuss an emerging trend of what was

loosely being called lightweight processes.

We had all seen projects fail because of ponderous, artifact-heavy, and

results-light processes. It seemed like there should be a better way to

look at methodology—a way to focus on the important stuff and de-

emphasize the less important stuff that seemed to take up a lot of valu-

able time with little benefit.

These seventeen folks coined the term agile and published the Agile

Manifesto to describe a refocused approach to software development: an

approach that emphasizes people, collaboration, responsiveness, and

working software (see the sidebar on this page for the introduction to

the manifesto).

The agile approach combines responsive, collaborative people with a

focus on demonstrable, concrete goals (software that actually works).

That’s the spirit of agility. The practical emphasis of development shifts

CLICK HERE to purchase this book now.

agilemanifesto.org
http://www.pragprog.com/titles/pad

CHAPTER 1. AGILE SOFTWARE DEVELOPMENT 3

from a plan-based approach, where key events happen in individual,

separate episodes, to a more natural, continuous style.

It’s assumed that everyone on the team (and working with the team)

are professionals who want a positive outcome from the project. They

may not necessarily be experienced professionals yet, but they possess

a professional attitude—everyone wants to do the best job they can.

If you have problems with absenteeism, slackers, or outright saboteurs,

this is probably not the approach for you. You’ll need something more

heavy-handed, slower, and less productive. Otherwise, you can begin

developing in the agile style.

That means you don’t leave testing to the end of the project. You don’t

leave integration to the end of the month or stop gathering requirements

and feedback as you begin to code.

Continuous

development, not

episodic

Instead, you continue to perform all these

activities throughout the life cycle of the

project. In fact, since software is never really

“done” as long as people continue to use it, it’s

arguable that these aren’t even projects any-

more. Development is continuous. Feedback is continuous. You don’t

have to wait for months to find out that something is wrong: you find

out quickly, while it’s still relatively easy to fix. And you fix it, right then

and there.

That’s what it’s all about.

This idea of continuous, ongoing development is pervasive in agile

methods. It includes the development life cycle itself but also technol-

ogy skills learning, requirements gathering, product deployment, user

training, and everything else. It encompasses all activities, at all levels.

Inject energy
Why? Because developing software is such

a complex activity, anything substantive that

you leave until later won’t happen, won’t hap-

pen well, or will grow worse and fester until it becomes unmanageable.

A certain kind of friction increases, and things get harder to fix and

harder to change. As with any friction, the only way to fight it effec-

tively is to continually inject a little energy into the system (see “Soft-

ware Entropy” in The Pragmatic Programmer [HT00]).

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pad

CHAPTER 1. AGILE SOFTWARE DEVELOPMENT 4

Some people raise the concern that agile development is just crisis man-

agement in disguise. It’s not. Crisis management occurs when problems

are left to fester until they become so large that you have to drop every-

thing else you’re doing to respond to the crisis immediately. This causes

secondary crises, so now you have a vicious cycle of never-ending crisis

and panic. That’s precisely what you want to avoid.

Instead, you want to tackle small problems while they are still small,

explore the unknown before you invest too much in it, and be prepared

to admit you got it all wrong as soon as you discover the truth. You need

to retool your thinking, your coding practices, and your teamwork. It’s

not hard to do, but it might feel different at first.

The Practice of Agility

A useful definition of agility might be as follows:

Agile development uses feedback to make constant
 adjustments in a highly collaborative environment.

Here’s a quick summary of what that means in practice and what life

on an agile team looks like.

It’s a team effort. Agile teams tend to be small or broken up into several

small (ten or so people) teams. You mostly work very closely together,

in the same war room (or bull pen) if possible, sharing the code and

the necessary development tasks. You work closely with the client or

customer who is paying for this software and show them the latest

version of the system as early and as often as possible.

You get constant feedback from the code you’re writing and use auto-

mation to continuously build and test the project. You’ll notice that the

code needs to change as you go along: while the functionality remains

the same, you’ll still need to redesign parts of the code to keep up.

That’s called refactoring, and it’s an ongoing part of development—code

is never really “done.”

Work progresses in iterations: small blocks of time (a week or so) where

you identify a set of features and implement them. You demo the iter-

ation to the customer to get feedback (and make sure you’re headed in

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pad

CHAPTER 1. AGILE SOFTWARE DEVELOPMENT 5

the right direction) and release full versions to the user community as

often as practical.

With this all in mind, we’re going to take a closer look at the practices

of agility in the following areas:

Chapter 2: Beginning Agility. Software development is all in your

head. In this chapter, we’ll explain what we mean by that and

how to begin with an agile mind-set and good personal practices

as a firm foundation for the remainder of the book.

Chapter 3: Feeding Agility. An agile project doesn’t just sit there. It

requires ongoing background practices that aren’t part of devel-

opment itself but are vitally important to the health of the team.

We’ll see what needs to be done to help keep your team and your-

self growing and moving forward.

Chapter 4: Delivering What Users Want. No matter how well written,

software is useless if it doesn’t meet the users’ needs. We’ll take

a look at practices and techniques to keep the users involved,

learn from their experience with the system, and keep the project

aligned with their real needs.

Chapter 5: Agile Feedback. Using feedback to correct the software

and the development process is what keeps an agile team on

course where others might flounder and crash. The best feed-

back comes from the code itself; this chapter examines how to get

that feedback as well as how to get a better handle on the team’s

progress and performance.

Chapter 6: Agile Coding. Keeping code flexible and adaptable to meet

an uncertain future is critical to agile success. This chapter out-

lines some practical, proven techniques to keep code clean and

malleable and prevent it from growing into a monster.

Chapter 7: Agile Debugging. Debugging errors can chew through a lot

of time on a project—time you can’t afford to lose. See how to make

your debugging more effective and save time on the project.

Chapter 8: Agile Collaboration. Finally, an agile developer can be

only so effective; beyond that, you need an agile team. We’ll show

you the most effective practice we’ve found to help jell a team

together, as well as other practices that help the team function

on a day-to-day basis and grow into the future.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pad

CHAPTER 1. AGILE SOFTWARE DEVELOPMENT 6

An Agile Toolkit

Throughout the text, we’ll refer to some of the basic tools that
are in common use on agile projects. Here’s a quick introduc-
tion, in case some of these might be new to you. More infor-
mation on these topics is available from the books listed in the
bibliography.

Wiki. A Wiki (short for WikiWikiWeb) is a website that allows
users to edit the content and create links to new content
using just a web browser. Wikis are a great way to encour-
age collaboration, because everyone on the team can
dynamically add and rearrange content as needed. For
more on Wikis, see The Wiki Way [LC01].

Version control. Everything needed to build the project—all
source code, documents, icons, build scripts, etc.—needs
to be placed in the care of a version control system. Sur-
prisingly, many teams still prefer to plop files on a shared
network drive, but that’s a pretty amateurish approach.
For a detailed guide to setting up and using version con-
trol, see Pragmatic Version Control Using CVS [TH03] or
Pragmatic Version Control Using Subversion [Mas05].

Unit testing. Using code to exercise code is a major source
of developer feedback; we’ll talk much more about
that later in the book, but be aware that readily avail-
able frameworks handle most of the housekeeping details
for you. To get started with unit testing, there’s Prag-
matic Unit Testing in Java [HT03] and Pragmatic Unit Test-
ing in C# [HT04], and you’ll find helpful recipes in JUnit
Recipes [Rai04].

Build automation. Local builds on your own machine, as well
as centrally run builds for the whole team, are completely
automated and reproducible. Since these builds run all
the time, this is also known as continuous integration. As
with unit testing, there are plenty of free, open-source and
commercial products that will take care of the details for
you. All the tips and tricks to build automation (including
using lava lamps) are covered in Pragmatic Project Auto-
mation [Cla04].

Finally, you can find a good reference to tie these basic envi-
ronmental practices together in Ship It! [RG05].

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pad

CHAPTER 1. AGILE SOFTWARE DEVELOPMENT 7

The Devil and Those Pesky Details

If you’ve flipped through the book, you may have noticed that the intro-

duction section of the tips features a small woodcut of the devil himself,

tempting you into bad and careless habits. They look like this:

“Go ahead, take that shortcut. It will save you time, really. No

one will ever know, and you can be done with this task and

move on quickly. That’s what it’s all about.”

Some of his taunts may seem absurd, like something out of Scott

Adams’s Dilbert cartoons and his archetypical “pointy-haired boss.” But

remember Mr. Adams takes a lot of input from his loyal readers.

Some may seem more outlandish than others, but they are all legiti-

mate lines of thought that your authors have heard, seen in practice,

or secretly thought. These are the temptations we face, the costly short-

cut we try anyway, in the vain hope of saving time on the project.

To counter those temptations, there’s another section at the end of each

practice where we’ll give you your own guardian angel, dispensing key

advice that we think you should follow:

Start with the hardest. Always tackle the most difficult

problems first, and leave the simple one towards the end.

And since the real world is rarely that black-and-white, we’ve included

sections that describe what a particular practice should feel like and

tips on how to implement it successfully and keep it in balance. They

look like this:

What It Feels Like

This section describes what a particular practice should feel like. If

you aren’t experiencing it this way, you may need to revise how you’re

following a particular practice.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pad

CHAPTER 1. AGILE SOFTWARE DEVELOPMENT 8

Keeping Your Balance

• It’s quite possible to overdo or underdo a practice, and in these

sections we’ll try to give you advice to keep a practice in balance,

as well as general tips to help make it work for you.

After all, too much of a good thing, or a good thing misapplied, can

become very dangerous (all too often we’ve seen a so-called agile project

fail because the team didn’t keep a particular practice in balance). We

want to make sure you get real benefits from these practices.

By following these practices and applying them effectively in the real

world—with balance—you’ll begin to see a positive change on your

projects and in your team.

You’ll be following the practices of an agile developer, and what’s more,

you’ll understand the principles that drive them.

Acknowledgments

Every book you read is a tremendous undertaking and involves many

more people behind the scenes than just your lowly authors.

We’d like to thank all the following people for helping make this book

happen.

Thanks to Jim Moore for creating the cover illustration and to Kim

Wimpsett for her outstanding copyediting (and any remaining errors

are surely the fault of our last-minute edits).

A special thanks to Johannes Brodwall, Chad Fowler, Stephen Jenkins,

Bil Kleb, and Wes Reisz for their insight and helpful contributions.

And finally, thanks to all our reviewers who graciously gave their time

and talent to help make this a better book: Marcus Ahnve, Eldon

Alameda, Sergei Anikin, Matthew Bass, David Bock, A. Lester Buck III,

Brandon Campbell, Forrest Chang, Mike Clark, John Cook, Ed Gibbs,

Dave Goodlad, Ramamurthy Gopalakrishnan, Marty Haught, Jack Her-

rington, Ron Jeffries, Matthew Johnson, Jason Hiltz Laforge, Todd Lit-

tle, Ted Neward, James Newkirk, Jared Richardson, Frédérick Ros,

Bill Rushmore, David Lázaro Saz, Nate Schutta, Matt Secoske, Guerry

Semones, Brian Sletten, Mike Stok, Stephen Viles, Leif Wickland, and

Joe Winter.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pad

CHAPTER 1. AGILE SOFTWARE DEVELOPMENT 9

Venkat says:

I would like to thank Dave Thomas for being such a wonderful mentor.

Without his guidance, encouragement, and constructive criticism this

book would have stayed a great idea.

I’m blessed to have Andy Hunt as my coauthor; I’ve learned a great

deal from him. He is not only technically savvy (a fact that any prag-

matic programmer out there already knows) but has incredible expres-

sive power and exceptional attitude. I have admired the Pragmatic Pro-

grammers in every step of making of this book—they’ve truly figured

and mastered the right set of tools, techniques, and, above all, attitude

that goes into publishing.

I thank Marc Garbey for his encouragement. The world can use more

people with his sense of humor and agility—he’s a great friend. My

special thanks to the geeks (err, friends) I had the pleasure to hang

out with on the road—Ben Galbraith, Brian Sletten, Bruce Tate, Dave

Thomas, David Geary, Dion Almaer, Eitan Suez, Erik Hatcher, Glenn

Vanderburg, Howard Lewis Ship, Jason Hunter, Justin Gehtland, Mark

Richards, Neal Ford, Ramnivas Laddad, Scott Davis, Stu Halloway, and

Ted Neward—you guys are awesome! I thank Jay Zimmerman (a.k.a.

agile driver), director of NFJS, for his encouragement and providing an

opportunity to express my ideas on agility to his clients.

I thank my dad for teaching me the right set of values, and to you, Mom,

for you’re my true inspiration. None of this would have been possible

but for the patience and encouragement of my wife, Kavitha, and my

sons, Karthik and Krupakar; thank you and love you.

Andy says:

Well, I think just about everyone has been thanked already, but I’d like

to thank Venkat especially for inviting me to contribute to this book.

I wouldn’t have accepted that offer from just anyone, but Venkat has

been there and done that. He knows how this stuff works.

I’d like to thank all the good agile folks from the Snowbird get-together.

None of us invented agility, but everyone’s combined efforts have cer-

tainly made it a growing and powerful force in the modern world of

software development.

And of course, I’d like to thank my family for their support and under-

standing. It has been a long ride from the original The Pragmatic Pro-

grammer book, but it has been a fun one.

And now, on with the show.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pad

He who chooses the beginning of a road

chooses the place it leads to.

Harry Emerson Fosdick

Chapter 2

Beginning Agility
Traditional books on software development methodology might start

with the Roles you’ll need on a project, followed by the many Artifacts

you need to produce (documents, checklists, Gantt charts, and so on).

After that you’ll see the Rules, usually expressed in a somewhat “Thou

Shalt...” format.1 Well, we’re not going to do any of that here. Welcome

to agility, where we do things a bit differently.

For instance, one popular software methodology suggests you need to

fulfill some thirty-five distinct roles on a project, ranging from archi-

tect to designer to coder to librarian. Agile methods take a different

tack. You perform just one role: software developer. That’s you. You do

what’s needed on the team, working closely with the customer to build

software. Instead of relying on Gantt charts and stone tablets, agility

relies on people.

Software development doesn’t happen in a chart, an IDE, or a design

tool; it happens in your head. But it’s not alone. There’s a lot of other

stuff happening in there as well: your emotions, office politics, egos,

memories, and a whole lot of other baggage. Because it’s all mixed in

together, things as ephemeral as attitude and mood can make a big

difference.

And that’s why it’s important to pay attention to attitude: yours and

the team’s. A professional attitude focuses on positive outcomes for the

project and the team, on personal and team growth, and on success. It’s

easy to fall into pursuing less noble goals, and in this chapter, we’ll look

1. Or the ever popular, “The System shall....”

CHAPTER 2. BEGINNING AGILITY 11

at ways to stay focused on the real goals. Despite common distractions,

you want to Work for Outcome (see how beginning on the next page).

Software projects seem to attract a lot of time pressure—pressure that

encourages you to take that ill-advised shortcut. But as any experi-

enced developer will tell you, Quick Fixes Become Quicksand (see how

to avoid the problem starting on page 15).

Each one of us has a certain amount of ego. Some of us (not naming

names here) have what might be charitably termed a very “healthy”

amount of ego; when asked to solve a problem, we take pride in arriving

at the solution. But that pride can sometimes blind our objectivity.

You’ve probably seen design discussions turn into arguments about

individuals and personalities, rather than sticking to the issues and

ideas related to the problem at hand. It’s much more effective to Criticize

Ideas, Not People (it’s on page 18).

Feedback is fundamental to agility; you need to make changes as soon

as you realize that things are headed in the wrong direction. But it’s not

always easy to point out problems, especially if there may be political

consequences. Sometimes you need courage to Damn the Torpedoes, Go

Ahead (we’ll explain when, starting on page 23).

Agility works only when you adopt a professional attitude toward your

project, your job, and your career. Without the right attitude, these

practices won’t help all that much. But with the right attitude, you can

reap the full benefits of this approach. Here are the practices and advice

we think will help.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pad

WORK FOR OUTCOME 12

1 Work for Outcome
“The first and most important step in addressing a problem

is to determine who caused it. Find that moron! Once you’ve

established fault, then you can make sure the problem doesn’t

happen again. Ever.”

Sometimes that old devil sounds so plausible. Certainly you want to

make finding the culprit your top priority, don’t you? The bold answer

is no. Fixing the problem is the top priority.

You may not believe this, but not everyone always has the outcome

of the project as their top priority. Not even you. Consider your first,

“default” reaction when a problem arises.

You might inadvertently fuel the problem by saying things that will

complicate things further, by casting blame, or by making people feel

defensive. Instead, take the high road, and ask, “What can I do to solve

this or make it better?” In an agile team, the focus is on outcomes. You

want to focus on fixing the problem, instead of affixing the blame.

Blame doesn’t fix bugs
The worst kind of job you can have (other than

cleaning up after the elephants at the circus)

is to work with a bunch of highly reactive peo-

ple. They don’t seem interested in solving problems; instead, they take

pleasure in talking about each other behind their backs. They spend

all their energy pointing fingers and discussing who they can blame.

Productivity tends to be pretty low in such teams. If you find yourself

on such a team, don’t walk away from it—run. At a minimum, redirect

the conversation away from the negative blame game toward something

more neutral, like sports or the weather (“So, how about those Yan-

kees?”).

On an agile team, the situation is different. If you go to an agile team

member with a complaint, you’ll hear, “OK, what can I do to help you

with this?” Instead of brooding over the problem, they’ll direct their

efforts toward solving it. Their motive is clear; it’s the outcome that’s

important, not the credit, the blame, or the ongoing intellectual superi-

ority contest.

You can start this yourself. When a developer comes to you with a com-

plaint or a problem, ask about the specifics and how you can help. Just

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pad

WORK FOR OUTCOME 13

Compliance Isn’t Outcome

Many standardization and process efforts focus on measuring
and rating compliance to process on the rationale that if the
process works and it can be proved that you followed it exactly,
then all is right with the world.

But the real world doesn’t work that way. You can be ISO-9001
certified and produce perfect, lead-lined life jackets. You fol-
lowed the documented process perfectly; too bad all the users
drowned.

Measuring compliance to process doesn’t measure outcome.
Agile teams value outcome over process.

that simple act makes it clear that you intend to be part of the solu-

tion, not the problem; this takes the wind out of negativism. You’re here

to help. People will then start to realize that when they approach you,

you’ll genuinely try to help solve problems. They can come to you to get

things fixed and go elsewhere if they’re still interested in whining.

If you approach someone for help and get a less than professional

response, you can try to salvage the conversation. Explain exactly what

you want, and make it clear that your goal is the solution, not the

blame/credit contest.

Blame doesn’t fix bugs. Instead of pointing fingers, point

to possible solutions. It’s the positive outcome that counts.

What It Feels Like

It feels safe to admit that you don’t have the answer. A big mistake feels

like a learning opportunity, not a witch hunt. It feels like the team is

working together, not blaming each other.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pad

WORK FOR OUTCOME 14

Keeping Your Balance

• “It’s not my fault” is rarely true. “It’s all your fault” is usually

equally incorrect.

• If you aren’t making any mistakes, you’re probably not trying hard

enough.

• It’s not helpful to have QA argue with developers whether a prob-

lem is a defect or an enhancement. It’s often quicker to fix it than

argue about it.

• If one team member misunderstood a requirement, an API call,

or the decisions reached in the last meeting, then it’s very likely

other team members may have misunderstood as well. Make sure

the whole team is up to speed on the issue.

• If a team member is repeatedly harming the team by their actions,

then they are not acting in a professional manner. They aren’t

helping move the team toward a solution. In that case, they need

to be removed from this team.2

• If the majority of the team (and especially the lead developers)

don’t act in a professional manner and aren’t interested in moving

in that direction, then you should remove yourself from the team

and seek success elsewhere (which is a far better idea than being

dragged into a “Death March” project [You99]).

2. They don’t need to be fired, but they don’t need to be on this team. But be aware that

moving and removing people is dangerous to the team’s overall balance as well.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pad

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style, and continue to garner awards

and rave reviews. As development gets more and more difficult, the Pragmatic Program-

mers will be there with more titles and products to help programmers stay on top of their

game.

Visit Us Online
Practices of an Agile Developer Home Page

pragmaticprogrammer.com/titles/pad

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

pragmaticprogrammer.com/updates

Be notified when updates and new books become available.

Join the Community

pragmaticprogrammer.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

pragmaticprogrammer.com/news

Check out the latest pragmatic developments in the news.

Buy the Book
If you liked this PDF, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragmaticprogrammer.com/titles/pad.

Contact Us
Phone Orders: 1-800-699-PROG (+1 919 847 3884)

Online Orders: www.pragmaticprogrammer.com/catalog

Customer Service: orders@pragmaticprogrammer.com

Non-English Versions: translations@pragmaticprogrammer.com

Pragmatic Teaching: academic@pragmaticprogrammer.com

Author Proposals: proposals@pragmaticprogrammer.com

pragmaticprogrammer.com/titles/pad
www.pragmaticprogrammer.com/catalog

