
This card summarizes the guidelines from
Practices of an Agile Developer: Working in the Real World
(ISBN 0-9745140-8-X)
by Venkat Subramaniam and Andy Hunt.

For more information about THE PRAGMATIC BOOKSHELF please visit
www.pragmaticprogrammer.com.

Practices of an Agile Developer

TIPS 1 TO 11

1. Blame doesn’t fix bugs.
Instead of pointing fingers, point
to possible solutions. It’s the
positive outcome that counts.
(pg. 14)

2. Don’t fall for the quick hack.
Invest the energy to keep code
clean and out in the open. (pg. 18)

3. Criticize ideas, not people.
Take pride in arriving at a solution
rather than proving whose idea is
better. (pg. 22)

4. Do what’s right.
Be honest, and have the courage
to communicate the truth. It may
be difficult at times; that’s why it
takes courage. (pg. 25)

5. Keep up with changing
technology.
You don’t have to become an
expert at everything, but stay
aware of where the industry is
headed, and plan your career and
projects accordingly. (pg. 31)

6. Raise the bar for you
and your team.
Use brown-bag sessions to
increase everyone’s knowledge and
skills and help bring people
together. Get the team excited
about technologies or techniques
that will benefit your project.
(pg. 33)

7. Learn the new; unlearn the old.
When learning a new technology,
unlearn any old habits that might
hold you back. After all, there’s
much more to a car than just a
horseless carriage. (pg. 37)

8. Keep asking Why.
Don’t just accept what you’re told
at face value. Keep questioning
until you understand the root of
the issue. (pg. 39)

9. Tackle tasks before they
bunch up.
It’s easier to tackle common
recurring tasks when you
maintain steady, repeatable
intervals between events. (pg. 42)

10. Let your customers decide.
Developers, managers, or
business analysts shouldn’t make
business-critical decisions.
Present details to business owners
in a language they can
understand, and let them make
the decision. (pg. 48)

11. A good design is a map;
let it evolve.
Design points you in the right
direction. It’s not the territory
itself; it shouldn’t dictate the
specific route. Don’t let the design
(or the designer) hold you hostage.
(pg. 52)

Copyright c© 2006 Venkat Subramaniam and Andy Hunt, excerpted from Practices of an Agile Developer, ISBN 0-9745140-8-X



TIPS 12 TO 25

12. Choose technology based
on need.
Determine your needs first, and
then evaluate the use of
technologies for those specific
problems. Ask critical questions
about the use of any technology,
and answer them genuinely.
(pg. 55)

13. Keep your project releasable
at all times.
Ensure that the project is always
compilable, runnable, tested, and
ready to deploy at a moment’s
notice. (pg. 59)

14. Integrate early, integrate often.
Code integration is a major source
of risk. To mitigate that risk, start
integration early and continue to
do it regularly. (pg. 61)

15. Deploy your application
automatically from the start.
Use that deployment to install the
application on arbitrary machines
with different configurations to
test dependencies. QA should test
the deployment as well as your
application. (pg. 64)

16. Develop in plain sight.
Keep your application in sight
(and in the customers’ mind)
during development. Bring
customers together and
proactively seek their feedback
using demos every week or two.
(pg. 69)

17. Develop in increments.
Release your product with
minimal, yet usable, chunks of
functionality. Within the
development of each increment,
use an iterative cycle of one to
four weeks or so. (pg. 74)

18. Estimate based on real work.
Let the team actually work on the
current project, with the current
client, to get realistic estimates.
Give the client control over their
features and budget. (pg. 76)

19. Use automated unit tests.
Good unit tests warn you about
problems immediately. Don’t
make any design or code changes
without solid unit tests in place.
(pg. 84)

20. Use it before you build it.
Use Test Driven Development as a
design tool. It will lead you to a
more pragmatic and simpler
design. (pg. 88)

21. Different makes a difference.
Run unit tests on each supported
platform and environment
combination, using continuous
integration tools. Actively find
problems before they find you.
(pg. 92)

22. Create tests for core
business logic.
Have your customers verify these
tests in isolation, and exercise
them automatically as part of your
general test runs. (pg. 94)

23. Measure how much work is left.
Don’t kid yourself—or your
team—with irrelevant metrics.
Measure the backlog of work to
do. (pg. 97)

24. Every complaint holds a truth.
Find the truth, and fix the real
problem. (pg. 100)

25. Write code to be clear,
not clever.
Express your intentions clearly to
the reader of the code. Unreadable
code isn’t clever. (pg. 106)

Copyright c© 2006 Venkat Subramaniam and Andy Hunt, excerpted from Practices of an Agile Developer, ISBN 0-9745140-8-X



TIPS 26 TO 38

26. Comment to communicate.
Document code using well-chosen,
meaningful names. Use comments
to describe its purpose and
constraints. Don’t use
commenting as a substitute for
good code. (pg. 112)

27. Actively evaluate trade-offs.
Consider performance,
convenience, productivity, cost,
and time to market. If
performance is adequate, then
focus on improving the other
factors. Don’t complicate the
design for the sake of perceived
performance or elegance. (pg. 115)

28. Write code in short
edit/build/test cycles.
It’s better than coding for an
extended period of time. You’ll
create code that’s clearer, simpler,
and easier to maintain. (pg. 116)

29. Develop the simplest solution
that works.
Incorporate patterns, principles,
and technology only if you have a
compelling reason to use them.
(pg. 119)

30. Keep classes focused and
components small.
Avoid the temptation to build large
classes or components or
miscellaneous catchall classes.
(pg. 122)

31. Tell, don’t ask.
Don’t take on another object’s or
component’s job. Tell it what to
do, and stick to your own job.
(pg. 125)

32. Extend systems by
substituting code.
Add and enhance features by
substituting classes that honor
the interface contract. Delegation
is almost always preferable to
inheritance. (pg. 130)

33. Maintain a log of problems and
their solutions.
Part of fixing a problem is
retaining details of the solution so
you can find and apply it later.
(pg. 133)

34. Treat warnings as errors.
Checking in code with warnings is
just as bad as checking in code
with errors or code that fails its
tests. No checked-in code should
produce any warnings from the
build tools. (pg. 137)

35. Attack problems in isolation.
Separate a problem area from its
surroundings when working on it,
especially in a large application.
(pg. 140)

36. Handle or propagate all
exceptions.
Don’t suppress them, even
temporarily. Write your code with
the expectation that things will
fail. (pg. 143)

37. Present useful error messages.
Provide an easy way to find the
details of errors. Present as much
supporting detail as you can
about a problem when it occurs,
but don’t bury the user with it.
(pg. 147)

38. Use stand-up meetings.
Stand-up meetings keep the team
on the same page. Keep the
meeting short, focused, and
intense. (pg. 153)

Copyright c© 2006 Venkat Subramaniam and Andy Hunt, excerpted from Practices of an Agile Developer, ISBN 0-9745140-8-X



TIPS 39 TO 45

39. Good design evolves from
active programmers.
Real insight comes from active
coding. Don’t use architects who
don’t code—they can’t design
without knowing the realities of
your system. (pg. 156)

40. Emphasize collective
ownership of code.
Rotate developers across different
modules and tasks in different
areas of the system. (pg. 158)

41. Be a mentor.
There’s fun in sharing what you
know—you gain as you give. You
motivate others to achieve better
results. You improve the overall
competence of your team. (pg. 161)

42. Give others a chance to
solve problems.
Point them in the right direction
instead of handing them solutions.
Everyone can learn something in
the process. (pg. 164)

43. Share code only when ready.
Never check in code that’s not
ready for others. Deliberately
checking in code that doesn’t
compile or pass its unit tests
should be considered an act of
criminal project negligence.
(pg. 166)

44. Review all code.
Code reviews are invaluable in
improving the quality of the code
and keeping the error rate low. If
done correctly, reviews can be
practical and effective. Review
code after each task, using
different developers. (pg. 170)

45. Keep others informed.
Publish your status, your ideas
and the neat things you’re looking
at. Don’t wait for others to ask you
the status of your work. (pg. 172)

&

www.PragmaticProgrammer.com/titles/pad

Copyright c© 2006 Venkat Subramaniam and Andy Hunt, excerpted from Practices of an Agile Developer, ISBN 0-9745140-8-X


