
CHAPTER 5

Actors in Scala
Author: This is the original version of the Actors chapter, written using Scala and Akka. After it was written,
we took the decision to switch to Elixir in the book, but it seemed a shame to discard this version. Therefore,
we’ve made it available as an online bonus chapter. Please be aware that it hasn’t gone through the same
degree of review and editing as the chapter in the book.

An actor is like a rental car—quick and easy to get hold of when you want
one, and if it breaks down you don’t bother trying to fix it, you just call the
rental agency and another one is delivered to you.

The actor model is a general purpose concurrent programming model with
particularly wide applicability. It can target both shared- and distributed-
memory architectures, facilitates geographical distribution and provides
especially strong support for fault-tolerance and resilience.

More Object-Oriented than Objects
Functional programming avoids the problems associated with shared mutable
state by avoiding mutable state. Actor programming, by contrast, retains
mutable state, but avoids sharing it.

An actor is like an object in an object-oriented program—it encapsulates state
and communicates with other actors by exchanging messages. The difference
is that actors run concurrently with each other and, unlike OO-style message
passing (which is really just calling a method) actors really communicate by
sending messages to each other.

Although actors are most commonly associated with Erlang, they can be used
in just about any language. We’re going to cover actors in Scala,1 using the
Akka concurrency library,2 which is shipped with the standard Scala distri-

1. http://www.scala-lang.org
2. http://akka.io

report erratum • discuss

bution. Akka supports many different concurrency models, but we will only
look at its support for actors in this chapter.

Scala is a hybrid object/functional language that runs on the JVM. If you’re
familiar with either Java or Ruby, then you should find it easy enough to
read. This isn’t going to be a Scala tutorial (this is a book about concurrency,
not programming languages), but I’ll introduce the important Scala features
we’re using as we go along. There may be things you just have to take on
trust if you’re not already familiar with the language—I recommend Program-
ming in Scala by Martin Odersky, Lex Spoon, and Bill Venners if you want to
go deeper.

In day 1, we’ll see the basics of the actor model—creating actors, and sending
and receiving messages. In day 2 we’ll see how failure detection, coupled with
the “let it crash” philosophy, allows actor programs to be fault tolerant.
Finally, in day 3 we’ll see how actors’ support for distributed programming
allows us to both scale beyond a single machine, and recover from failure of
one or more of those machines.

Day 1: Messages and Mailboxes
Today, we’ll see how to create and stop actors, send and receive messages,
and detect when an actor has terminated.

Our First Actor
Let’s dive straight in with an example of creating a simple actor and sending
it some messages. We’re going to construct an actor called “talker.” Here are
the messages that it understands:

ActorsScala/HelloActors/src/main/scala/com/paulbutcher/HelloActors.scala
case class Greet(name: String)
case class Praise(name: String)
case class Celebrate(name: String, age: Int)

This defines three Scala case classes (we’ll see why “case” classes shortly):
Greet, Praise, and Celebrate, all of which have a name parameter of type String, to
which Celebrate adds age of type Int.

Here’s the code for our actor:

ActorsScala/HelloActors/src/main/scala/com/paulbutcher/HelloActors.scala
class Talker extends Actor {

def receive = {
case Greet(name) => println(s"Hello $name")
case Praise(name) => println(s"$name, you're amazing")

Chapter 5. Actors in Scala • 118

report erratum • discuss

case Celebrate(name, age) => println(s"Here's to another $age years, $name")
}

}

Now you can see why we used case classes to define our messages—case
classes are classes that can be used within case clauses.

We’ll pick through this code in more detail soon, but we’re defining an actor
that knows how to receive three different kinds of message, and prints an
appropriate string when it receives each of them.

Finally, here’s the main application:

ActorsScala/HelloActors/src/main/scala/com/paulbutcher/HelloActors.scala
object HelloActors extends App {

val system = ActorSystem("HelloActors")

val talker = system.actorOf(Props[Talker], "talker")

talker ! Greet("Huey")
talker ! Praise("Dewey")
talker ! Celebrate("Louie", 16)

Thread.sleep(1000)

system.shutdown
}

First, we create an ActorSystem, and then use its actorOf() method to create an
instance of Talker. Instances of actors are created by an actor factory created
by Props—a polymorphic class that takes an actor type as an argument (Scala
uses square brackets for type arguments where C++ or Java would use angle
brackets). Because actorOf() takes a factory, it can create more than one
instance of an actor if necessary—we’ll see why this is important soon.

Next, we send three messages to our newly created actor with the ! (exclama-
tion mark or tell) operator and sleep for a while to give it time to process those
messages (using sleep() isn’t the best approach—we’ll see how to do this better
soon). Finally, we shut down the actor system.

Here’s what you should see when you run it:

Hello Huey
Dewey, you're amazing
Here's to another 16 years, Louie

Now that we’ve seen how to create an actor and send messages to it, let’s see
what’s going on under the covers.

report erratum • discuss

Day 1: Messages and Mailboxes • 119

Mailboxes Are Queues
One of the most important features of actor programming is that messages
are sent asynchronously. Instead of being sent directly to an actor, they are
placed in a mailbox:

HelloActors

Celebrate:
Louie, 16
Praise:
Dewey
Greet:
Huey

Mailbox

Talker

This means that actors are decoupled—actors run at their own speed and
don’t block when sending messages.

An actor runs concurrently with other actors, but handles messages
sequentially, in the order they were added to the mailbox, moving on to next
message only when it’s finished processing the current message. We only
have to worry about concurrency when sending messages.

Joe asks:
What About Other Kinds of Mailbox?

If you read the Akka documentation, you’ll notice that an actor can be configured to
use many different kinds of mailbox, including:

Priority mailboxes: allow high priority messages to be processed ahead of lower prior-
ity ones.

Durable mailboxes: store messages in a durable store (the file system, for example).

Bounded mailboxes: won’t grow beyond a certain size.

Custom mailboxes: in case none of those provided as standard suffice.

Using one of these will affect the semantics of sending a message—sending a message
to a bounded mailbox might block, for example.

These different types of mailbox are useful optimization tools, but they are not part
of the core actor programming model and we will not cover them in this book.

The heart of an actor is its receive() method. Here’s Talker’s again:

Chapter 5. Actors in Scala • 120

report erratum • discuss

ActorsScala/HelloActors/src/main/scala/com/paulbutcher/HelloActors.scala
def receive = {

case Greet(name) => println(s"Hello $name")
case Praise(name) => println(s"$name, you're amazing")
case Celebrate(name, age) => println(s"Here's to another $age years, $name")

}

Scala method definitions can look slightly odd if you’re used to Java because
much of the “noise” is missing. As receive() takes no arguments, Scala allows
us to remove the parentheses following the method name, and there’s no
explicit return type because Scala’s type inference has inferred it for us. Nor
is there an explicit return statement—whatever is on the right hand side of the
equals sign is returned from the method.

The return value is a partial function (a function that is defined for some values
and not for others) that will be used to handle messages sent to the actor. In
this case, a partial function that uses pattern matching to handle three differ-
ent types of value: Greet, Praise and Celebrate.

Each case clause defines a pattern. Incoming messages are matched against
each pattern in turn—if it matches, the variables in the pattern (name and age)
are bound to the values in the message and the code to the right of the arrow
(=>) executed. That code prints a message constructed using string interpola-
tion—wherever a dollar sign appears in a string of the form s"...", the value to
the right of the dollar sign is inserted into the string.

That’s quite a bit of work for a humble 5-line method.

Joe asks:
Is an Actor a Thread?

As we saw in Thread Creation Redux, on page 32, creating too many threads can
cause problems. Are we in danger of running into the same problems if we create too
many actors?

The short answer is “no.” Although it would be possible to create a naïve actor system
where each actor ran on its own dedicated thread, that’s not how Akka works. Instead,
actors are scheduled to run on threads as needed (when they have messages to pro-
cess). It’s quite possible to have thousands of actors running concurrently without
problems.

We won’t cover them here, but dispatchersa allow you to tune exactly how actors are
scheduled.

a. http://doc.akka.io/docs/akka/2.1.0/scala/dispatchers.html

report erratum • discuss

Day 1: Messages and Mailboxes • 121

The code on page 119 sleeps for a second to allow messages to be processed
before shutting the actor system down. This is an unsatisfactory solution—hap-
pily, we can do better.

Poison Pills and Death Watch
We need two things to be able to shutdown cleanly. First, we need a way to
tell talker to stop when it’s finished processing all the messages in its queue.
And second, we need some way to know when it has done so so we can then
shut the system down.

We can achieve the first of these by sending talker a poison pill, and the second
by establishing a death watch on it.

First, we have a little housekeeping to do—instead of creating an instance of
Talker directly within our main thread, we’re going to create a new “master”
actor that will be notified when talker terminates:

ActorsScala/HelloActorsBetter/src/main/scala/com/paulbutcher/HelloActors.scala
object HelloActors extends App {

val system = ActorSystem("HelloActors")

system.actorOf(Props[Master], "master")
}

Here’s the implementation of Master:

ActorsScala/HelloActorsBetter/src/main/scala/com/paulbutcher/HelloActors.scala
class Master extends Actor {

val talker = context.actorOf(Props[Talker], "talker")

override def preStart {
context.watch(talker)➤

talker ! Greet("Huey")
talker ! Praise("Dewey")
talker ! Celebrate("Louie", 16)
talker ! PoisonPill➤

}

def receive = {
case Terminated(`talker`) => context.system.shutdown➤

}
}

Chapter 5. Actors in Scala • 122

report erratum • discuss

The work of creating an instance of Talker and sending messages to it now
takes place in Master’s preStart() method, which as its name suggests is automat-
ically called before the actor starts.

Akka provides a context member that an actor can use to gain access to the
actor system it’s running in, and various other features. Calling context.watch()
establishes a death watch on talker, meaning that master will receive a Terminated
message when talker terminates. The backticks (`) in the Terminated pattern
mean that it matches the value of the existing talker variable, rather than
binding to a new variable.

Finally, PoisonPill is a standard Akka message that all actors understand, which
causes them to stop when they receive it. It’s a normal message that gets
added to the message queue just like any other, so we know that it will be
handled after any previously sent messages.

Producer-Consumer with Actors
We’ve now got enough tools at our fingertips to create an actor-based version
of our Wikipedia word-count program. As before, we’ll split it into a producer
that parses the XML into pages and a consumer that counts the words on
each page. This time, however, both producer and consumer will be actors.

We can’t simply create a producer that sends pages to the consumer as fast
as it can parse them, however. Because we can parse pages much more
quickly than we can count the words on them, we need to put some kind of
flow control in place. If we didn’t, the consumer’s queue would grow until it
exhausted memory.

With that in mind, here’s the souce for Parser:

ActorsScala/WordCount/src/main/scala/com/paulbutcher/Parser.scala
case object ProcessedLine 1

-

class Parser(counter: ActorRef) extends Actor {-
-

val pages = Pages(100000, "enwiki.xml")5
-

override def preStart {-

for (page <- pages.take(10))-

counter ! page-

}10
-

def receive = {-

case Processed if pages.hasNext => counter ! pages.next-

case _ => context.stop(self)-

}15

report erratum • discuss

Day 1: Messages and Mailboxes • 123

}-

Parser’s constructor takes a reference to the counter actor (in Scala, constructor
arguments go after the class name) so it knows where to send pages. On line
8, we “prime the pump” by sending 10 messages, but we don’t send any more
until we receive a Processed message (line 13). Finally, when there are no more
pages left, on line 14, we stop.

Here’s the source for Counter:

ActorsScala/WordCount/src/main/scala/com/paulbutcher/Counter.scala
class Counter extends Actor {

val counts = HashMap[String, Int]().withDefaultValue(0)

def receive = {
case Page(title, text) =>
for (word <- Words(text))

counts(word) += 1
sender ! Processed➤

}
}

Each time it receives a Page, it adds the words in that page to its counts map.
It then makes use of the fact that each message has a sender associated with
it to send a Processed message back to the parser.

Finally, here’s Master, which creates instances of both Parser and Counter:

ActorsScala/WordCount/src/main/scala/com/paulbutcher/Master.scala
class Master extends Actor {

val counter = context.actorOf(Props[Counter], "counter")
val parser = context.actorOf(Props(new Parser(counter)), "parser")

override def preStart {
context.watch(counter)
context.watch(parser)

}

def receive = {
case Terminated(`parser`) => counter ! PoisonPill
case Terminated(`counter`) => context.system.shutdown

}
}

When Master notices that parser has stopped, it sends a PoisonPill to counter. And
when counter stops, it shuts the entire system down.

Chapter 5. Actors in Scala • 124

report erratum • discuss

As we did with our threads and locks version, now that we have a working
producer-consumer implementation, we can speed it up by running multiple
consumers.

Multiple Consumers
There are a couple of questions we need to answer before we can create a
multiple consumer version of WordCount. Firstly, how will our producer know
to which consumer it should send each message? And secondly, how are we
going to accumulate the results from multiple consumers?

It turns out that Akka provides an out of the box answer to the first question
in the form of routers. The second problem is solved by introducing another
actor—an accumulator. Here’s a diagram of where we’re heading:

Counter

AccumulatorParser Router

Counter

Counter

Let’s start with the accumulator:

ActorsScala/WordCountMultipleCounters/src/main/scala/com/paulbutcher/Accumulator.scala
case class Counts(counts: Map[String, Int])

class Accumulator extends Actor {

val counts = HashMap[String, Int]().withDefaultValue(0)

def receive = {
case Counts(partialCounts) =>
for ((word, count) <- partialCounts)

counts(word) += count
}

}

report erratum • discuss

Day 1: Messages and Mailboxes • 125

When it receives a Counts message, it iterates through each (word, count) pair in
the map of partial counts, adding them to its totals in counts.

The consumer is very similar to what we’ve already seen:

ActorsScala/WordCountMultipleCounters/src/main/scala/com/paulbutcher/Counter.scala
class Counter(accumulator: ActorRef) extends Actor {➤

val counts = HashMap[String, Int]().withDefaultValue(0)

def receive = {
case Page(title, text) =>
for (word <- Words(text))

counts(word) += 1
sender ! Processed

}

override def postStop() {➤
accumulator ! Counts(counts)➤

}➤
}

There are two changes. Firstly we’re passing it a reference to the accumulator.
Secondly, we override postStop() to send a Counts message to the accumulator.
As its name suggests, postStop() is called after an actor has stopped.

Parser is unchanged from what we already have.

Finally, here’s the new version of Master that wires everything together:

ActorsScala/WordCountMultipleCounters/src/main/scala/com/paulbutcher/Master.scala
class Master extends Actor {

val accumulator = context.actorOf(Props[Accumulator], "accumulator")
val counters = context.actorOf(

Props(new Counter(accumulator)).withRouter(RoundRobinRouter(4)),➤
"counter")

val parser = context.actorOf(Props(new Parser(counters)), "parser")

override def preStart {
context.watch(accumulator)
context.watch(counters)
context.watch(parser)

}

def receive = {
case Terminated(`parser`) => counters ! Broadcast(PoisonPill)➤
case Terminated(`counters`) => accumulator ! PoisonPill
case Terminated(`accumulator`) => context.system.shutdown

}
}

Chapter 5. Actors in Scala • 126

report erratum • discuss

Instead of creating a single Counter instance, we create an instance of
RoundRobinRouter. This router then creates 4 Counter instances using the actor
factory created by Props. Any messages sent to the router are routed to these
counters, round robin fashion.

The reference returned by actorOf() is a reference to the router. The beauty is
that we can pass this reference to our producer, and it’s none the wiser—exact-
ly the same implementation that worked with a single consumer works just
fine with multiple consumers.

PoisonPill and Routers

It is possible to send a PoisonPill directly to a router, and doing so will appear to
work—both the router and its routees will stop. Unfortunately, doing so introduces
a subtle bug. When it receives a PoisonPill, a router shuts itself and its routees down
immediately, whether or not those routees still have messages to process.

The solution is to broadcast the PoisonPill to the routees:

counters ! Broadcast(PoisonPill)

This time, the message is added to the tail of each routee’s mailbox as normal, so
they shut down only when they’ve processed the messages already in the mailbox.
The router automatically shuts down when it notices that its routees have all shut
down.

Day 1 Wrap-Up
This brings us to the end of day 1. In day 2, we’ll see how the actor model
helps with error handling and resilience.

What We Learned in Day 1

Actors run concurrently, do not share state, and communicate by asyn-
chronously sending messages to mailboxes. We saw how to:

• Create actors.

• Send messages.

• Leverage Scala’s pattern matching to match and process messages.

• Register for notification when an actor terminates (death watch).

• Send a poison pill to shut an actor down cleanly.

• Use a router to create and route messages to multiple actors.

report erratum • discuss

Day 1: Messages and Mailboxes • 127

Day 1 Self-Study

Find
• As well as the ! or tell operator, Akka also provides ? or ask. How does ask

make use of futures? When might you choose to use it over tell?

• In addition to RoundRobinRouter, what other types of router are available?
When might you use them?

• Scala/Akka programs run on top of the JVM and are therefore subject to
the Java memory model. Why isn’t memory visibility an issue for an actor
program?

Do
• Use Akka’s configuration mechanism to configure the number of counters

created by WordCount in application.conf instead of in code.

• Research Akka’s become/unbecome mechanism and implement the dining
philosophers problem we saw in Chapter 2, Threads and Locks, on page
9 with it.

• Reimplement your dining philosophers solution using Akka’s FSM mixin.
What are the strengths and weaknesses of the two approaches?

Day 2: Error Handling and Resilience
As we saw in Concurrency Enables Resilience on page 6, one of the key ben-
efits of concurrency is that it enables us to write fault tolerant code. Today
we’ll see the tools that actors provide to enable us to do so.

We’ll start by looking at how one actor can find an instance of another by
looking up its path.

Actor Paths
One of the great things about Scala is its console (sometimes called a “Read,
Eval, Print Loop” or REPL). This allows you to type code and have it evaluated
immediately without having to create source files and compile them, which
can be amazingly helpful when experimenting with unfamiliar code. We’ll use
it now to experiment with actor paths.

The “Paths” project that accompanies this book defines TestActor as follows:

ActorsScala/Paths/src/main/scala/com/paulbutcher/TestActor.scala
case class CreateChild(name: String)
case object SayHello

Chapter 5. Actors in Scala • 128

report erratum • discuss

case class SayHelloFrom(path: String)

class TestActor extends Actor {

def receive = {
case CreateChild(name) => context.actorOf(Props[TestActor], name)
case SayHello => println(s"Hello from $self")
case SayHelloFrom(path) => context.actorFor(path) ! SayHello

}
}

You can start a Scala console by typing sbt console (sbt is Scala’s standard build
tool—the equivalent of rake for Ruby or ant or mvn for Java). You should see
something like this:

Welcome to Scala version 2.10.0 (Java HotSpot(TM) 64-Bit Server VM, Java 1.7.0_09).
Type in expressions to have them evaluated.
Type :help for more information.

scala>

Any code you type after the scala> prompt will be evaluated immediately. Here’s
how you can create an ActorSystem and a couple of actors:

scala> val system = ActorSystem("Paths")
system: akka.actor.ActorSystem = akka://Paths

scala> val anActor = system.actorOf(Props[TestActor], "an-actor")
anActor: akka.actor.ActorRef = Actor[akka://Paths/user/an-actor]

scala> anActor ! SayHello

Hello from Actor[akka://Paths/user/an-actor]

Now you can see why we’ve been giving names to the actors we’ve been creat-
ing—they’re used to create a path that can be used to refer to that actor.

Actor paths are URIs, and hierarchical. There are two ways to get hold of a
reference to an actor—by holding on to the reference returned by actorOf(), or
by looking up a path:

scala> anActor ! CreateChild("a-child")

scala> val aChild = system.actorFor("/user/an-actor/a-child")
aChild: akka.actor.ActorRef = Actor[akka://Paths/user/an-actor/a-child]

scala> aChild ! SayHello

Hello from Actor[akka://Paths/user/an-actor/a-child]

report erratum • discuss

Day 2: Error Handling and Resilience • 129

The CreateChild message we defined earlier instructs our actor to create a child
actor with context.actorOf. Because it’s a child, its path is a sub-path of its par-
ent’s. We then lookup a reference for that new actor with actorFor().

Paths can be relative, as well as absolute:

scala> anActor ! CreateChild("another-child")

scala> aChild ! SayHelloFrom("../another-child")

Hello from Actor[akka://Paths/user/an-actor/another-child]

The SayHelloFrom(path) message instructs our actor to send a SayHello message
to the actor reference returned by context.actorFor(path).

Paths can even include wildcards, allowing us to reference more than one
actor at a time with actorSelection():

scala> val children = system.actorSelection("/user/an-actor/*")
children: akka.actor.ActorSelection = akka.actor.ActorSelection$$anon$1@51a4bf7e

scala> children ! SayHello

Hello from Actor[akka://Paths/user/an-actor/a-child]
Hello from Actor[akka://Paths/user/an-actor/another-child]

Joe asks:
Why /user?

You’ll have noticed that all our actor paths contain /user. Akka supports a number of
top level scopes for actor paths, including:

/user the parent for user-created top level actors (those created by system.actorOf).

/system the parent for system-created actors.

/temp the parent for short-lived system-created actors.

Next, we’ll look at exactly when actors are started, stopped and restarted.

The Actor Life-cycle
To understand how actors help with fault tolerance, we need to understand
the life-cycle of an actor. The “Lifecycle” project that accompanies this book
defines TestActor, which overrides the life-cycle hooks provided by Akka so we
can see when they’re called:

ActorsScala/Lifecycle/src/main/scala/com/paulbutcher/TestActor.scala
case class CreateChild(name: String)

Chapter 5. Actors in Scala • 130

report erratum • discuss

case class Divide(x: Int, y: Int)

class TestActor extends Actor {

def receive = {
case CreateChild(name) => context.actorOf(Props[TestActor], name)
case Divide(x, y) => log(s"$x / $y = ${x / y}")

}

override def preStart() { log(s"preStart") }

override def preRestart(reason: Throwable, message: Option[Any]) {
log(s"preRestart ($reason, $message)")

}

override def postRestart(reason: Throwable) { log(s"postRestart ($reason)") }

override def postStop() { log(s"postStop") }

def log(message: String) { println(s"${self.path.name}: $message") }
}

We’ve already seen preStart() and postStop()—the others are preRestart() and
postRestart().

Let’s see what happens if we create an actor with a child and then stop it:

scala> val anActor = system.actorOf(Props[TestActor], "an-actor")
anActor: akka.actor.ActorRef = Actor[akka://Paths/user/an-actor]

an-actor: preStart

scala> anActor ! CreateChild("a-child")

a-child: preStart

scala> anActor ! PoisonPill

a-child: postStop
an-actor: postStop

We can see that preStart() is called when an actor starts, and postStop() when it
stops. And stopping a parent also stops its children.

So far, so unsurprising. Let’s see what happens if we make the child perform
a division by zero (and therefore throw an ArithmeticException):

scala> val child = system.actorFor("/user/an-actor/a-child")
child: akka.actor.ActorRef = Actor[akka://Paths/user/an-actor/a-child]

scala> child ! Divide(1, 0)

report erratum • discuss

Day 2: Error Handling and Resilience • 131

[ERROR] «...» [akka://Paths/user/an-actor/a-child] / by zero
java.lang.ArithmeticException: / by zero
«stack trace»

a-child: preRestart (java.lang.ArithmeticException: / by zero, Some(Divide(1,0)))
a-child: postRestart (java.lang.ArithmeticException: / by zero)

So when the child experiences an error, it’s automatically restarted. We’ll see
why next.

Supervision
An actor’s parent is also its supervisor. Whenever an actor throws an exception,
its supervisor is consulted to see what should happen. The supervisor
chooses between the following options:

Resume: Discards the message that was being processed when the exception
was thrown. Maintains the internal state of the actor.

Restart: Discards the message that was being processed when the exception
was thrown. Destroys the original instance of the actor and creates a new
one. This has the effect of resetting the internal state of the actor.

Terminate: Terminates the actor. Any further messages that were in the
actor’s mailbox will not be processed.

Escalate: Escalate the decision to the supervisor’s supervisor. This might
result in the supervisor itself being restarted or terminated.

The possible transitions are shown in the following diagram:

Started Stopped

Restarting Injured

stop postStoppreStart

preRestart

Terminate
Resume

throw
postRestart

In addition, a supervisor chooses between a one-for-one or all-for-one strategy:

One-for-one: Only the child that experienced the error is restarted or termi-
nated.

Chapter 5. Actors in Scala • 132

report erratum • discuss

All-for-one: All of the supervisor’s children are restarted or terminated when
a single child experiences an error.

The default supervision strategy is one-for-one, and in most cases restarts
the failing actor (see the Akka documentation for full details) but can be
overridden.

Joe asks:
What’s the Difference Between Supervision and
Death Watch?

Supervision and death watch are related, but different. Death watch allows us to
observe failure, supervision allows us to manage it.

Every actor has exactly one supervisor—it’s parent, but can have zero or more death
watches in place. A supervisor may establish a death watch on its children, but does
not have to do so.

A Custom Supervisor Strategy
Let’s experiment with creating our own customized supervisor strategy. Here’s
an actor that implements a simple cache (perhaps we want to cache web
pages), but contains a few bugs:

ActorsScala/BuggyCache/src/main/scala/com/paulbutcher/BuggyCache.scala
case class Put(key: String, value: String)
case class Get(key: String)
case object ReportSize

class BuggyCache extends Actor {

val cache = HashMap[String, String]()
var size = 0

def receive = {
case Put(key, value) =>
cache(key) = value
size += value.length

case Get(key) => sender ! Result(cache(key))

case ReportSize => sender ! Result(size)
}

override def postRestart(reason: Throwable) {
println("BuggyCache has restarted")

report erratum • discuss

Day 2: Error Handling and Resilience • 133

}
}

It supports three messages: Put adds an entry to the cache, Get retrieves an
entry, and ReportSize reports how much data the cache contains.

Here’s an actor that we’ll use as its supervisor:

ActorsScala/BuggyCache/src/main/scala/com/paulbutcher/Master.scala
case class Result(result: Any)

class Master extends Actor {

val cache = context.actorOf(Props[BuggyCache], "cache")

def receive = {
case Put(key, value) => cache ! Put(key, value)
case Get(key) => cache ! Get(key)
case ReportSize => cache ! ReportSize
case Result(result) => println(result)

}

override val supervisorStrategy = OneForOneStrategy() {➤
case _: NoSuchElementException => Resume➤
case _: NullPointerException => Restart➤
case _ => Escalate➤

}➤
}

This actor overrides supervisorStrategy with an instance of OneForOneStrategy. A
child will be resumed if it throws NoSuchElementException, and restarted if it
throws NullPointerException. If it throws anything else, the decision will be esca-
lated.

Here’s an example of things working:

scala> val master = system.actorOf(Props[Master], "master")
master: akka.actor.ActorRef = Actor[akka://BuggyCache/user/master]

scala> master ! Put("google.com", "Welcome to Google ...")

scala> master ! Get("google.com")

Welcome to Google ...

scala> master ! ReportSize

21

So far so good—we can put an entry into our cache, get it back again, and
see how large the cache is.

Chapter 5. Actors in Scala • 134

report erratum • discuss

What happens if we try to retrieve a non-existent entry?

scala> master ! Get("nowhere.com")

[ERROR] «...» [akka://BuggyCache/user/master/cache] key not found: nowhere.com
java.util.NoSuchElementException: key not found: nowhere.com
«stack trace»

Damn—looks like our cache doesn’t handle non-existent entries well, throwing
an unhandled NoSuchElementException. Not good.

Nevertheless, because its supervisor’s strategy says that this should result
in a Resume, we can continue using the cache, and all its previous state still
exists:

scala> master ! Get("google.com")

Welcome to Google ...

scala> master ! ReportSize

21

How about a different error? What happens if we try to insert bad data (a null
value) into the cache?

scala> master ! Put("paulbutcher.com", null)

[ERROR] «...» [akka://BuggyCache/user/master/cache] null
java.lang.NullPointerException
«stack trace»

BuggyCache has restarted

scala> master ! ReportSize

0

Looks like our cache doesn’t handle that very well either. This time, the Bug-
gyCache actor is restarted. Nevertheless, we can still send messages to the
same reference after the restart, although the new instance has lost any state
that was stored in the previous instance.

The Elements of Fault Tolerance
We’ve now seen all the building blocks that help us create fault tolerant code:

Actor Factories: Because actorOf() takes an actor factory, new instances of
actors can be created when necessary, in particular when they need to
be restarted.

report erratum • discuss

Day 2: Error Handling and Resilience • 135

Mailboxes: As-yet unhandled messages reside in a mailbox, meaning that
they aren’t lost, and can still be handled if an actor is restarted.

Actor References: Because actorOf() and actorFor() both return an actor reference,
not the actor itself, we can continue to use the same reference even if the
actor is restarted.

Supervision: Every actor has a supervisor, which decides what action should
be taken if it experiences an error.

Death watch: Any actor can establish a death watch on any other, allowing
it to know when the actor dies and take appropriate action.

These building blocks naturally lead to a hierarchical structure in which risky
operations are pushed down the hierarchy, which we’ll cover next.

The Error Kernel Pattern
Tony Hoare famously said:3

There are two ways of constructing a software design: One way is to make it so
simple that there are obviously no deficiencies and the other way is to make it so
complicated that there are no obvious deficiencies.

Actor programming naturally supports an approach to writing fault-tolerant
code that leverages this observation—the error kernel pattern.

A software system’s error kernel is the part that must be correct if the system
is to function correctly. Well written programs make this error kernel as small
and as simple as possible. So small and simple that there are obviously no
deficiencies.

An actor program’s error kernel is its top-level actors. These supervise their
children, starting, stopping, resuming, and restarting them as necessary.

Each module of a program has its own error kernel in turn—the part of the
module that must be correct for it to function correctly. Sub-modules also
have error kernels, and so on.

This leads to a hierarchy of error kernels in which risky operations are pushed
down towards the lower-level actors, as shown in the following figure:

3. http://awards.acm.org/images/awards/140/articles/4622167.pdf

Chapter 5. Actors in Scala • 136

report erratum • discuss

/user

Top-level
actors

2nd-level
actors

nth-level
actors

Increasing
Risk

Figure 4—A Hierarchy of Error Kernels

Closely related to the error kernel pattern is the thorny subject of defensive
programming.

Let It Crash!
Defensive programming is an approach to achieving fault-tolerance by trying
to anticipate possible bugs. Imagine, for example, that we’re writing a method
that takes a string and returns true if it’s all uppercase and false otherwise.
Here’s one possible implementation:

def allUpper(s: String) = s.forall(_.isUpper)

This is a perfectly reasonable method, but if for some reason we pass null to
it, it will crash. With that in mind, some developers would add something
along these lines to the beginning:

if (s == null) return false

So, now the code won’t crash, but what does it mean to call this function with
null? There’s an excellent chance that any code that does so contains a bug—a
bug that we’ve now masked, meaning that we’re likely to remain unaware of
it until it bites us at some time in the future.

report erratum • discuss

Day 2: Error Handling and Resilience • 137

Actor programs tend to avoid defensive programming and subscribe to the
let it crash philosophy, allowing the fault tolerance mechanisms we’ve dis-
cussed to address the problem instead. This has multiple benefits, including:

• Our code is simpler and easier to understand, with a clear separation
between “happy path” and fault-tolerance code.

• Actors are separate from each other and don’t share state, so there’s little
danger that a failure in one actor will adversely affect another. In partic-
ular, a failed actor’s supervisor cannot crash because the actor it’s
supervising crashes.

• Because the failure of an actor is logged, instead of sweeping problems
under the carpet, we become aware of them and can take remedial action.

Although it can seem alien at first acquaintance, the let it crash philosophy
has, together with the error kernel pattern, repeatedly been proven in produc-
tion. Some systems have reported availability as high as 99.9999999% (that’s
nine nines—see Programming Erlang: Software for a Concurrent World. by Joe
Armstrong).

Day 2 Wrap-Up
Day 1 introduced the basics of the actor model, and in day 2, we saw how
the actor model facilitates fault-tolerance. In day 3, we’ll see how the actor
model helps with distributed programming.

What We Learned in Day 2

Actors form a hierarchy and can be referred to through paths. Actors facilitate
the error kernel pattern and the let it crash philosophy. The building blocks
of fault tolerance are:

• Actor factories, allowing new actor instances to be created during a restart.

• Mailboxes, ensuring that as-yet unhandled messages aren’t lost.

• Actor references, which continue to be valid after a restart.

• Supervision, providing a structured way to decide how to react to errors.

• Death watch, allowing an actor that depends on another to know when
it dies.

Chapter 5. Actors in Scala • 138

report erratum • discuss

Day 2 Self-Study

Find
• What is Akka’s default supervision strategy? How does it handle non-error

shutdown?

• What is SupervisorStrategy.stoppingStrategy? When might you use it?

• What does the default implementation of preRestart() do?

Do
• Messages sent to actors that have terminated are sent to a virtual dead

letter mailbox. Write code to intercept messages sent to the dead letter
mailbox and display them.

Day 3: Distribution
Everything we’ve done so far has been on a single computer, but one of actors’
primary benefits compared to other concurrency models is that they support
distribution. All it takes is a little configuration to allow an actor on one
machine to send messages to one running on another.

Clustering
A cluster is a set of machines that collaborate to solve a single problem.
Cluster members can register to receive member events to be notified when
new members join or existing members leave or fail.

The “HelloCluster” project that accompanies this book defines a simple actor
system that we can use to experiment with clustering. It enables clustering
through application.conf:

ActorsScala/HelloCluster/src/main/resources/application.conf
akka {

actor {
provider = "akka.cluster.ClusterActorRefProvider"

}
remote {

transport = "akka.remote.netty.NettyRemoteTransport"
}

extensions = ["akka.cluster.Cluster"]
}

report erratum • discuss

Day 3: Distribution • 139

Joe asks:
How Do I Manage My Cluster?

Akka provides a number of cluster management options, including a command-line
interface and JMX. Two key areas to think about when designing a cluster are how
new nodes join, and how to handle node failure. The “HelloCluster” example adds
the following to the basic cluster configuration:

cluster {
auto-join = off
auto-down = on

}

For this example, I’ve chosen to have actor systems join the cluster by taking a
hostname on the command line and then explicitly calling Cluster(system).join(address).
An alternative would be to switch auto-join on and configure one or more seed nodes.

I’ve also chosen to switch auto-down on, which means that a cluster member that
becomes unreachable is automatically marked as “down.” This may not be the right
choice in production, however.

Cluster design trade-offs are subtle, and beyond the scope of this book. Please make
sure that you read the documentation about these questions before rolling out a
production cluster.

Here’s the implementation of TestActor:

ActorsScala/HelloCluster/src/main/scala/com/paulbutcher/TestActor.scala
case class HelloFrom(actor: ActorRef)

class TestActor extends Actor {

def receive = {
case MemberUp(member) =>
println(s"Member is up: $member")
val remotePath = RootActorPath(member.address) / "user" / "test-actor"
val remote = context.actorFor(remotePath)
remote ! HelloFrom(self)
context.watch(remote)

case HelloFrom(actor) => println(s"Hello from: $actor")
case Terminated(actor) => println(s"Terminated: $actor")
case event => println(s"Event: $event")

}
}

It does little more than print out the messages that it receives. The exception
is the MemberUp message that indicates that a new node has joined the cluster.
When it receives this message, our actor looks up the test-actor instance on

Chapter 5. Actors in Scala • 140

report erratum • discuss

the new cluster member, sends it a HelloFrom message and registers it for death
watch.

Finally, here’s an application that uses it:

ActorsScala/HelloCluster/src/main/scala/com/paulbutcher/HelloCluster.scala
object HelloCluster extends App {

val opts = parseCommandline

System.setProperty("akka.remote.netty.hostname", opts.localHost)
System.setProperty("akka.remote.netty.port", opts.localPort)

val system = ActorSystem("ClusterTest")

val testActor = system.actorOf(Props[TestActor], "test-actor")
Cluster(system).subscribe(testActor, classOf[MemberEvent])

Cluster(system).join(
Address("akka", "ClusterTest", opts.clusterHost, opts.clusterPort))

}

This parses the command line to find which hostname and port it should use,
and the hostname and port of the cluster that it should join. After creating
an instance of TestActor, it subscribes that actor to receive cluster member
events.

Here’s what happens if I create a single node cluster by having an actor system
(running on a machine with IP address 172.16.129.1) join itself:

$ sbt "run --local-host 172.16.129.1 --cluster-host 172.16.129.1"
Event: CurrentClusterState(TreeSet(),Set(),Set(),None)
Event: MemberJoined(Member(

address = akka://ClusterTest@172.16.129.1:2552, status = Joining))
Member is up: Member(address = akka://ClusterTest@172.16.129.1:2552, status = Up)
Hello from: Actor[akka://ClusterTest/user/test-actor]

We can see three events arriving at our test actor. First it receives CurrentClus-
terState, showing that the cluster is currently empty. Then it receives a Member-
Joined event for the local actor system, followed by a MemberUp. The last thing
we see is a HelloFrom message from the actor sent to itself.

Now let’s see what happens if we fire up an actor system on another computer
(172.16.129.137) and get it to join our cluster:

$ sbt "run --local-host 172.16.129.137 --cluster-host 172.16.129.1"
Event: CurrentClusterState(TreeSet(),Set(),Set(),None)
Member is up: Member(address = akka://ClusterTest@172.16.129.1:2552, status = Up)
Event: MemberJoined(Member(

address = akka://ClusterTest@172.16.129.137:2552, status = Joining))

report erratum • discuss

Day 3: Distribution • 141

Member is up: Member(address = akka://ClusterTest@172.16.129.137:2552, status = Up)
Hello from: Actor[akka://ClusterTest/user/test-actor]
Hello from: Actor[akka://ClusterTest@172.16.129.1:2552/user/test-actor]

As before, it first receives CurrentClusterState followed by MemberUp for the first
cluster node. Then there are MemberJoined and MemberUp events for the new node.
Finally, we see two HelloFrom messages, one from the new instance of TestActor
sent to itself, and one from the original actor.

On our first node, we see:

Event: MemberJoined(Member(
address = akka://ClusterTest@172.16.129.137:2552, status = Joining))

Hello from: Actor[akka://ClusterTest@172.16.129.137:2552/user/test-actor]
Member is up: Member(address = akka://ClusterTest@172.16.129.137:2552, status = Up)

So we can see the new cluster member joining, and the HelloFrom message from
the actor on that node.

Joe asks:
What If I Have Only One Computer?

If you have only one computer to hand and still want to experiment with clustering,
you have a few options:

• Use virtual machines.

• Fire up Amazon EC2 or similar cloud instances.

• Run multiple actor systems locally. Note that if you choose this route, each actor
system must run using a different port.

Finally, what if we kill the actor system on our new node? Initially, nothing
happens, but after a few seconds (long enough for Akka’s cluster system to
notice that the system at the other end of the network connection has gone
down) here’s what we see on the original node:

Terminated: Actor[akka://ClusterTest@172.16.129.137:2552/user/test-actor]
Event: MemberDowned(Member(

address = akka://ClusterTest@172.16.129.137:2552, status = Down))

So our death watch on the actor on the other node has triggered, and we’ve
received a MemberDowned message.

It’s worth taking a moment to think about what this simple example has
demonstrated. We’ve shown that we can dynamically add nodes to a cluster,
have actors in the cluster automatically discover actors running on other

Chapter 5. Actors in Scala • 142

report erratum • discuss

nodes, and notice when a network connection or cluster member goes down.
That’s a pretty powerful toolbox for creating distributed fault tolerant systems.

Push or Pull?
We’ll spend the rest of today developing a distributed, fault-tolerant version
of our word count program on top of Akka’s cluster support. Before we start
writing code, we should think about the best way to distribute work between
multiple actors when they’re running on different machines.

We glossed over a potential problem with the version we built yesterday—what
happens if some pages take much longer to process than others?

The round robin router we used will simply distribute work to the next actor
in sequence, whether or not it’s busy. If we’re unlucky, and one actor happens
to receive all the big work items, it could lag behind the others. Eventually
this might lead to us having to wait for that actor to catch up while the others
sit idle.

Although this might happen when our actors all run on a single machine, it’s
much more likely if they’re running on different machines with different per-
formance characteristics.

One potential solution would be to use an alternative router. SmallestMailboxRouter,
for example, is designed to address exactly this kind of problem. We’re going
to look at a different solution, however—switching to a pull model in which
consumers request work when they’re idle. Not only does this naturally provide
load balancing between consumers running at different speeds, but it also
helps with fault tolerance.

A WordCount Cluster
Here’s a diagram of the structure we’re heading for:

report erratum • discuss

Day 3: Distribution • 143

Counter

Node 1

Counter

Counter

Node 2

Counter

Parser

Node 0

Accumulator

Counter

Node n

Counter

Cluster

Figure 5—A WordCount Cluster

We’re going to have a single node that hosts the parser and the accumulator,
and then a number of nodes, each of which hosts a number of counters.

Here is the message flow between the three core types of actor:

Counter
Counter

Parser

Accumulator

Counter

RequestBatch

Batch

Counts

Processed

Processing a page is kicked off by a counter sending a RequestBatch message
to the parser. The parser responds with a Batch of work. When the counter
completes the batch, it sends the Counts it collected to the accumulator.

Chapter 5. Actors in Scala • 144

report erratum • discuss

Finally, the accumulator let’s the parser know that the batch has been Pro-
cessed.

Joe asks:
Why Batch Work?

The code we wrote yesterday sent pages one at a time. Why are we now batching
multiple pages within a message?

The reason is efficiency. When a consumer wants work from a producer, it now needs
to both send a message and receive a reply, potentially over a network connection.
This introduces both overhead and latency. We can amortize this by batching multiple
pages into a single message.

Let’s start by looking at the implementation of Counter:

ActorsScala/WordCountFaultTolerant/src/main/scala/com/paulbutcher/Counter.scala
case class ParserAvailable(parser: ActorRef)
case class Batch(id: Int, pages: Seq[Page], accumulator: ActorRef)

class Counter extends Actor {

def receive = {
case ParserAvailable(parser) => parser ! RequestBatch

case Batch(id, pages, accumulator) =>
sender ! RequestBatch
val counts = HashMap[String, Int]().withDefaultValue(0)
for (page <- pages)

for (word <- Words(page.text))
counts(word) += 1

accumulator ! Counts(id, counts)
}

}

When it receives a ParserAvailable message, telling it that a new parser has
become available (we’ll see what sends this message soon) it sends a Request-
Batch message to start work flowing.

Upon receiving a batch of work, it first requests more work. We do this first
so the producer can prepare the next batch while this one is being worked
on, minimizing the effect of network latency.

Next, it iterates over the pages contained within this batch, counting the
words contained within. Finally, it sends those counts to the accumulator.

report erratum • discuss

Day 3: Distribution • 145

Note that each batch has an id associated with it. We’ll see how this is used
when we look at the implementation of the parser.

Next, let’s see how instances of Counter are created:

ActorsScala/WordCountFaultTolerant/src/main/scala/com/paulbutcher/Counters.scala
class Counters(count: Int) extends Actor {

val counters = context.actorOf(Props[Counter].
withRouter(new BroadcastRouter(count)), "counter")

override def preStart {
Cluster(context.system).subscribe(self, classOf[MemberUp])

}

def receive = {
case state: CurrentClusterState =>
for (member <- state.members if (member.status == Up))

counters ! ParserAvailable(findParser(member))

case MemberUp(member) => counters ! ParserAvailable(findParser(member))
}

def findParser(member: Member) =
context.actorFor(RootActorPath(member.address) / "user" / "parser")

}

Counters creates a set of Counter instances by using a BroadcastRouter. As its name
suggests, this broadcasts any message it receives to its routees.

Counters registers to receive cluster events. When it receives either CurrentCluster-
State or MemberUp, it looks up the router instance on the nodes identified by
those messages and notifies its routees with ParserAvailable.

Joe asks:
What About Cluster Members With No Parser?

Every time a member joins the cluster, we look up /user/parser on it and send RequestBatch
messages to the resulting ActorRef. But just because a new member has joined the
cluster doesn’t mean that a Parser instance is running on it. So what happens to these
messages?

Messages sent to non-existent actors (or actors that have terminated) go to a special
virtual mailbox called dead letters, which by default discards them.

So if no parser is running on a new node, any message we send to it is discarded.

Next, here is Accumulator:

Chapter 5. Actors in Scala • 146

report erratum • discuss

ActorsScala/WordCountFaultTolerant/src/main/scala/com/paulbutcher/Accumulator.scala
case class Counts(id: Int, counts: Map[String, Int])

class Accumulator(parser: ActorRef) extends Actor {

val counts = HashMap[String, Int]().withDefaultValue(0)
val processedIds = Set[Int]()

def receive = {
case Counts(id, partialCounts) =>
if (!processedIds.contains(id)) {

for ((word, count) <- partialCounts)
counts(word) += count

processedIds += id
parser ! Processed(id)

}
}

}

When it receives the counts associated with a batch, it first checks to see if
it’s already received counts for that batch. If it has, it discards the new
counts—this means that it won’t double-count if a batch is processed more
than once (we’ll see how this might happen soon). If it hasn’t already seen
the id, it adds the counts to its totals and lets the parser know that the batch
has been completely processed.

Finally, here’s Parser:

ActorsScala/WordCountFaultTolerant/src/main/scala/com/paulbutcher/Parser.scala
case object RequestBatchLine 1

case class Processed(id: Int)-
-

class Parser(filename: String, batchSize: Int, limit: Int) extends Actor {-
5

val pages = Pages(limit, filename)-

var nextId = 1-

val pending = LinkedHashMap[Int, Batch]()-
-

val accumulator = context.actorOf(Props(new Accumulator(self)))10
-

def receive = {-

case RequestBatch =>-

if (pages.hasNext) {-

val batch = Batch(nextId, pages.take(batchSize).toVector, accumulator)15

pending(nextId) = batch-

sender ! batch-

nextId += 1-

} else {-

val (id, batch) = pending.head // The oldest pending item20

pending -= id // Remove and re-add so it's now-

report erratum • discuss

Day 3: Distribution • 147

pending(id) = batch // the youngest-

sender ! batch-

}-
25

case Processed(id) =>-

pending.remove(id)-

if (!pages.hasNext && pending.isEmpty)-

context.system.shutdown-

}30

}-

This differs from the parser we created yesterday in a number of ways. Firstly,
it maintains a record of pending work (line 8)—batches that have been sent
to a consumer, but not yet fully processed. It also creates the Accumulator
instance, passing it a reference to itself (line 10).

When it receives a RequestBatch message, there are two cases to consider:

• If there are still unparsed pages available (line 15) it builds a batch by
parsing pages, records that batch as pending, and sends it to the con-
sumer that made the request.

• If there are no unparsed pages available (line 20) it sends the oldest
pending batch to the consumer that made the request.

Why this second case? Surely every pending batch will eventually be pro-
cessed? What do we gain by sending it to another consumer?

What we gain is fault tolerance. If a consumer exits, or the network goes
down, or the machine it’s running on dies, we’ll just end up sending the batch
it was processing to another consumer. Because each batch has an id asso-
ciated with it, we know which batches have been processed and won’t double-
count.

To convince yourself, try starting a cluster and verify that:

• You can add parsers and counters to a cluster in any order, and everything
“just works.”

• If you pull the network cable out the back of a machine running counters,
or kill the process they’re running in, the remaining counters continue
to process pages, including those that were in progress on that machine.

This is a great example of the benefits of concurrent, distributed development.
This program will hardly miss a beat when faced with a hardware failure that
would kill a normal sequential or multi-threaded program.

Chapter 5. Actors in Scala • 148

report erratum • discuss

Day 3 Wrap-Up
This brings us to the end of day 3, and our discusion of programming with
actors.

What We Learned in Day 3

Because actors share no data and communicate through message passing,
they naturally map on to a distributed architecture. We saw how to create a
cluster in which actors can:

• Be notified of changes to the cluster, including when new members join.

• Look up actor instances running on other cluster members.

• Send messages to, and receive messages from, remote actors.

• Detect when remote actors fail.

Day 3 Self-Study

Find
• What guarantees does Akka make regarding message delivery? How do

the guarantees for local messages differ from remote messages?

• How does Akka detect remote failures?

Do
• The fault tolerant word count program we developed can handle failure

of a counter or the machine that it’s running on, but not the parser or
accumulator. Create a version that can handle failure of any actor or
node.

• Research Akka’s support for testing clusters and write tests for our word
count program.

Wrap-Up
Alan Kay, the designer of Smalltalk and father of object-oriented programming,
had this to say on the essence of object-orientation:4

I’m sorry that I long ago coined the term “objects” for this topic because it gets
many people to focus on the lesser idea.

The big idea is “messaging” … The Japanese have a small word—ma—for “that
which is in between”—perhaps the nearest English equivalent is “interstitial.” The

4. http://c2.com/cgi/wiki?AlanKayOnMessaging

report erratum • discuss

Wrap-Up • 149

key in making great and growable systems is much more to design how its modules
communicate rather than what their internal properties and behaviors should
be.

This captures the essence of actor programming very well—we can think of
actors as the logical extension of object-oriented programming to the concur-
rent world. Indeed, you can think of actors as more object-oriented than
objects, with stricter message passing and encapsulation.

Strengths
Actors have a number of features that make them ideal for solving a wide
range of concurrent problems.

Messaging and Encapsulation

Actors do not share state and, although they run concurrently with each
other, within a single actor everything is sequential. This means that we need
only worry about concurrency when considering message flows between
actors.

This is a huge boon to the developer. An actor can be tested in isolation and,
as long as our tests accurately represent the types of, and order in which
messages might be delivered, we can have high confidence that it behaves as
it should. And if we do find ourselves faced with a concurrency-related bug,
we know where to look—the message flows between actors.

Fault Tolerance

Fault tolerance is built into actor programs from the outset. This not only
enables more resilient programs, but also (through the “let it crash” philoso-
phy) simpler and clearer code.

Distributed Programming

Actors’ support for both shared and distributed memory architectures brings
a number of significant advantages:

Firstly, it allows an actor program to scale to solve problems of almost any
size. We are not limited to problems that fit on a single system.

Secondly, it allows us to address problems where geographical distribution
is an intrinsic consideration. Actors are an excellent choice for programs
where different elements of the software need to reside in different geograph-
ical locations.

Finally, distribution is a key enabler for resilient and fault-tolerant systems.

Chapter 5. Actors in Scala • 150

report erratum • discuss

Weaknesses
As with threads and locks, actors provide no direct support for parallelism.
Parallel solutions need to be built from concurrent building blocks, raising
the specter of non-determinism. And because actors do not share state, and
can only communicate through message passing, they are not a suitable
choice if you need fine-grained parallelism.

Other Languages
As with most good ideas, the actor model is not new—it was first described
in the 1970s, most notably by Carl Hewitt. The language that has done most
to popularize actor programming, however, is unquestionably Erlang.5 In
particular, Erlang’s creator Joe Armstrong is the originator of the “let it crash”
philosophy and its VM is specifically constructed to facilitate fault tolerance.

Most popular programming languages now have an actor library available.
Indeed, as well as being used in Scala, the Akka toolkit can be used to add
actor support to Java.

There are also languages that, although not strictly actor languages, make
heavy use of message-passing to support concurrency and have much in
common with actor programming. The most prominent such language is Go.6

Final Thoughts
The difficulties with multi-threaded programming arise from shared mutable
state. Actor programs avoid those difficulties by avoiding shared mutable
state altogether—actors share no data.

In the next chapter, we’ll see an approach that goes even further, avoiding
not only shared mutable state, but all mutable state.

5. http://www.erlang.org
6. http://golang.org

report erratum • discuss

Wrap-Up • 151

	Cover
	Table of Contents
	Changes in the Beta Releases
	Beta 4, December 4
	Beta 3, November 7
	Beta 2, October 14
	Beta 1, September 24

	Preface
	About This Book
	What This Book Is Not
	Example Code
	Online Resources

	1. Introduction
	Concurrent or Parallel?
	Parallel Architecture
	Concurrency: Beyond Multiple Cores
	The Seven Models

	2. Threads and Locks
	The Simplest Thing That Could Possibly Work
	Day 1: Mutual Exclusion and Memory Models
	Day 2: Beyond Intrinsic Locks
	Day 3: On the Shoulders of Giants
	Wrap-Up

	3. Functional Programming
	If It Hurts, Stop Doing It
	Day 1: Programming Without Mutable State
	Day 2: Functional Parallelism
	Day 3: Functional Concurrency
	Wrap-Up

	4. The Clojure Way—Separating Identity from State
	The Best of Both Worlds
	Day 1: Atoms and Persistent Data Structures
	Day 2: Agents and Software Transactional Memory
	Day 3: In Depth
	Wrap-Up

	5. Actors in Scala
	More Object-Oriented than Objects
	Day 1: Messages and Mailboxes
	Day 2: Error Handling and Resilience
	Day 3: Distribution
	Wrap-Up

	6. Communicating Sequential Processes
	7. Data Parallelism
	The Supercomputer Hidden in Your Laptop
	Day 1: GPGPU Programming
	Day 2: Multiple Dimensions and Work-Groups
	Day 3: OpenCL and OpenGL—Keeping it on the GPU
	Wrap-Up

	8. Lambda Architecture
	9. Wrapping Up
	Bibliography

