
Extracted from:

Debug It!
Find, Repair, and Prevent Bugs in Your Code

This PDF file contains pages extracted from Debug It!, published by the Pragmatic

Bookshelf. For more information or to purchase a paperback or PDF copy, please visit

http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2009 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2009 Paul Butcher.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-28-X

ISBN-13: 978-1-934356-28-9

Printed on acid-free paper.

B1.0 printing, June 17, 2009

Version: 2009-6-16

http://www.pragprog.com

Chapter 10

Teach Your Software to Debug
Itself

Plenty has been written about how to write good software. Much less

has been written about how to create software that is easy to debug.

The good news is that if you follow the normal principles of good soft-

ware construction—separation of concerns, avoiding duplication, infor-

mation hiding and so on—as well as creating software that is well struc-

tured, easy to understand and easy to modify, you will also create soft-

ware that is easy to debug. There is no conflict between good design

and debugging.

Nevertheless, there are a few additional things that you can put in place

that will help when you find yourself tracking down a problem. In this

chapter we’ll cover some approaches that can make debugging easier

or even, on occasion, unnecessary:

• Validating assumptions automatically with assertions.

• Debugging builds.

• Detecting problems in exception handling code automatically.

10.1 Assumptions and Assertions

Every piece of code is built upon a platform of myriad assumptions—

things that have to be true for it to behave as expected. More often than

not, bugs arise because one or more of these assumptions are violated

or turn out to be mistaken.

ASSUMPTIONS AND ASSERTIONS 159

Joe Asks. . .

Do I Need Assertions if I Have Unit Tests?

Some people argue that automated unit tests are a better solu-
tion to the problem that assertions are trying to solve. This line of
thought probably arises to some extent from the unfortunate
fact that the functions provided by JUnit to verify conditions
within tests are also (confusingly) called assertions.

It isn’t a question of either/or, but of both/and. Assertions and
unit tests are solving related, but different problems. Unit tests
can’t detect a bug that isn’t invoked by a test. Assertions can
detect a bug at any time, whether during testing or otherwise.

One way to think of unit tests is that they are (in part) the means
by which you ensure that all of your assertions are executed
regularly.

It’s impossible to avoid making such assumptions and pointless to try.

But the good news is that not only can we verify that they hold, we can

do so automatically with assertions.

What does an assertion look like? In Java, they can take two forms—the

first, simpler form is:

assert «condition»;

The second form includes a message that is displayed if the assertion

fails:

assert «condition» : «message»;

Whichever form you use, whenever it’s executed an assertion evaluates

its condition.1 If the condition evaluates to true, then it takes no action.

If, on the other hand, it evaluates to false, it throws an AssertionError

exception, which normally means that the program exits immediately.

So much for the theory, how does this work in practice?

1. If assertions are enabled, which we’ll get to soon.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pbdp

ASSUMPTIONS AND ASSERTIONS 160

An Example

Imagine that we’re writing an application that needs to make HTTP

requests. HTTP requests are very simple, comprising just a few lines

of text. The first line specifies the method (such as GET or POST), a URI

and which version of the HTTP protocol we’re using. Subsequent lines

contain a series of key/value pairs (one per line).2 For a GET request,

that’s it (other requests might also include a body).

We might define a small Java class HttpMessage that can generate GET

requests as follows:3

public class HttpMessage {

private TreeMap<String, String> headers = new TreeMap<String, String>();

Ê public void addHeader(String name, String value) {

headers.put(name, value);

}

Ë public void outputGetRequest(OutputStream out, String uri) {

PrintWriter writer = new PrintWriter(out, true);

writer.println("GET " + uri + " HTTP/1.1");

for (Map.Entry<String, String> e : headers.entrySet())

writer.println(e.getKey() + ": " + e.getValue());

}

}

It’s very simple—addHeader()Ê just adds a new key/value pair to the

headers map and outputGetRequest()Ë generates the start line, followed

by each key/value in turn.

Here’s how we might use it:

HttpMessage message = new HttpMessage();

message.addHeader("User-Agent", "Debugging example client");

message.addHeader("Accept", "text/html,test/xml");

message.outputGetRequest(System.out, "/path/to/file");

Which will generate the following:

GET /path/to/file HTTP/1.1

Accept: text/html,text/xml

User-Agent: Debugging example client

2. See the Hypertext transfer protocol [iet99] specification for further details.

3. Of course, you wouldn’t write this code yourself given the number of well-debugged

HTTP libraries available. But it’s a nice simple example for our purposes.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pbdp

ASSUMPTIONS AND ASSERTIONS 161

Joe Asks. . .

How Do I Choose a Good Assert Message?

An early reviewer spotted a poster in, of all places, Google’s
Beijing offices that read “Make sure that your error messages
aid in debugging, and don’t just tell you that you need to
debug.”

The example that they cited was an assertion of the general
form:

assert_lists_are_equal(list1, list2);

If this fails, it tells you that the lists are not equal. You still have
to go through the code trying to find where the lists started to
differ. It would be better to highlight the first element where the
difference occurs, whether the order has changed, or some-
thing else that gives you a head-start diagnosing the problem.

So far, so simple. What could possibly go wrong?

Well, our code is very trusting. It’s just taking what it’s given and pass-

ing it through as-is. Which means that if it’s called with bad argu-

ments it will end up generating invalid HTTP requests. If, for example,

addHeader() is called like this:

message.addHeader("", "a-value");

We’ll end up generating the following header, which is sure to confuse

any server we send it to:

: a-value

We can automatically detect if this happens by placing the following

assertion at the start of addHeader():

assert name.length() > 0 : "name cannot be empty";

Now, if we call addHeader() with an empty string, when assertions are

enabled the program exits immediately with:

Exception in thread "main" java.lang.AssertionError: name cannot be empty

at HttpMessage.addHeader(HttpMessage.java:17)

at Http.main(Http.java:16)

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pbdp

ASSUMPTIONS AND ASSERTIONS 162

Wait a Second—What Just Happened?

Let’s take a moment to reflect on what we’ve just done. We may have

only added a single, simple line of code to our software, but that line

has achieved something profound. We’ve taught our software to debug

itself. Now, instead of us having to hunt down the bug, the software

itself notices when something’s gone wrong and tells us about it.

Hopefully this happens during testing, before the embarrassment of it

being discovered by a user, but assertions are still helpful when track-

ing down bugs reported from the field. As soon as we find a way to

reproduce the problem, there’s a good chance that our assertions will

immediately pinpoint the assumption that’s being violated, dramati-

cally saving time during diagnosis.

Example, Take Two

Now that we’ve started down this road, how far can we go? What other

kinds of bugs can we detect automatically?

Detecting empty strings is fair enough, but are there any other obvi-

ously broken ways in which our class might be used? Once we start

thinking in this way, we can find plenty.

For a start, empty strings aren’t the only way that we could create an

invalid header—the HTTP specification defines a number of characters

that aren’t allowed to appear in header names. We can automatically

ensure that we never try to include such characters by adding the fol-

lowing to the top of addHeader():4

assert !name.matches(".*[\\(\\)<>@,;:\\\"/\\[\\]\\?=\\{\\}].*") :

"Invalid character in name";

Next, what does the following sequence of calls mean?

message.addHeader("Host", "somewhere.org");

message.addHeader("Host", "nowhere.com");

HTTP headers can only appear once in a message, so adding one twice

4. Don’t worry too much about the hairy regular expression in this code—it’s just match-

ing a simple set of characters. It looks more complicated than it might because some of

the characters need to be escaped with backslashes, and those backslashes themselves

also need to be escaped.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pbdp

ASSUMPTIONS AND ASSERTIONS 163

has to be a bug.5 A bug that we can catch automatically by adding the

following to the top of addHeader():

assert !headers.containsKey(name) : "Duplicate header: " + name;

Other checks we might consider (depending on exactly how we foresee

our class being used) might include:

• Verifying that outputGetRequest() is only called once and that

addHeader() isn’t called afterwards.

• Verifying that headers we know we always want to include in every

request are always added.

• Checking the values assigned to headers to make sure that they

are of the correct form (that the Accept header, for example, is

always given a list of MIME types).

So much for the example—are there any general rules we can use to

help us work out what kind of things we might assert?

Contracts, Pre-Conditions, Post-Conditions and Invariants

One way of thinking about the interface between one piece of code and

another is as a contract. The calling code promises to provide the called

code with an environment and arguments that confirm to its expecta-

tions. In return, the called code promises to carry out certain actions

or return certain values that the calling code can then use.

It’s helpful to consider three types of condition that, taken together,

make up a contract:

Pre-conditions: The pre-conditions for a method are those things that

must hold before it’s called in order for it to behave as expected.

The pre-conditions for our addHeader() method are that its argu-

ments are non-empty, don’t contain invalid characters, and so on.

Post-conditions: The post-conditions for a method are those things

that it guarantees will hold after it’s called (as long as it’s pre-

conditions were met). A post-condition for our addHeader() method

is that the size of the headers map is one greater than it was before.

5. Note to HTTP specification lawyers—I am aware that there are occasions where head-

ers can legitimately appear more than once. But they can always be replaced by a single

header that combines the values and for the sake of a simple example, I’m choosing to

ignore this subtlety.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pbdp

ASSUMPTIONS AND ASSERTIONS 164

Invariants: The invariants of an object are those things that (as long as

its method’s pre-conditions are met before they’re called) it guar-

antees will always be true. That the cached length of a linked list

is always equal to the length of the list, for example.

If you make a point of writing assertions that capture each of these

three things whenever you implement a class, you will naturally end

up with software that automatically detects a wide range of possible

bugs.

Switching Assertions On and Off

One key aspect of assertions that we’ve already alluded to is that they

can be disabled. Typically we choose to enable them during develop-

ment and debugging, but disable them in production.

In Java, we switch assertions on and off when we start the application

by using the following arguments to the java command:

-ea[:<packagename>...|:<classname>]

-enableassertions[:<packagename>...|:<classname>]

enable assertions

-da[:<packagename>...|:<classname>]

-disableassertions[:<packagename>...|:<classname>]

disable assertions

-esa | -enablesystemassertions

enable system assertions

-dsa | -disablesystemassertions

disable system assertions

In other languages, assertions are enabled and disabled using other

mechanisms. In C and C++ for example, we do so at build time using

conditional compilation.

Why might we choose to switch them off? There are two reasons—

efficiency and robustness.

Evaluating assertions takes time and doesn’t contribute anything to the

functionality of the software (after all, if the software is functioning cor-

rectly, none of the assertions should ever do anything). If an assertion

is in the heart of a performance critical loop, or the condition takes a

while to evaluate (thinking back to our earlier example, an assertion

that involved parsing the HTTP message to check that it’s well-formed)

it is possible to have a detrimental effect on performance.

A more pertinent reason for disabling assertions, however, is robust-

ness. If an assertion fails, the software unceremoniously exits with a

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pbdp

ASSUMPTIONS AND ASSERTIONS 165

terse and (to an end-user) unhelpful message. Or if our software is a

long-running server, a failed assertion will kill the server process with-

out tidying up after itself, leaving data in who knows what state. While

this may be perfect acceptable (desirable in fact) when we’re develop-

ing and debugging, it almost certainly isn’t what we want in production

software.

Instead, production software should be written to be fault tolerant or

to fail safe as appropriate. How you go about achieving this is outside

the scope of this book, but it does bring us onto the thorny subject of

defensive programming.

Defensive Programming

Defensive programming is one of the many terms in software develop-

ment that means different things to different people. What we’re talk-

ing about here is the common practice of achieving small-scale fault

tolerance by writing code that operates correctly (for some definition of

correctly) in the presence of bugs.

Software should be

robust in production,

fragile when debugging

But defensive programming is a double-edged

sword—from the point of view of debugging,

it just makes our lives harder. It transforms

what would otherwise be simple and obvious

bugs into bugs that are obscure, difficult to

detect, and difficult to diagnose. We may want our software to be as

robust as possible in production, but it’s much easier to debug fragile

software that falls over immediately when a bug manifests.

A common example is the almost universal for-loop idiom, in which,

instead of writing:

for (i = 0; i != iteration_count; ++i)

«Body of loop»

We write the following defensive version:

for (i = 0; i < iteration_count; ++i)

«Body of loop»

In almost all cases both loops behave identically iterating from zero

to iteration_count - 1. So why do so many of us automatically write the

second, not the first?6

6. Actually, this idiom is starting to fall out of favor in the C++ community thanks to the

Standard Template Library, but nevertheless there are millions of examples in existence.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pbdp

ASSUMPTIONS AND ASSERTIONS 166

The reason is because if the body of the loop happens to assign to i so

that it becomes larger than iteration_count, the first version of our loop

won’t terminate. By using < in our test instead of != we can guarantee

that the loop will terminate if this happens.

The problem with this is that if the loop index does become larger than

iteration_count, it almost certainly means that the code contains a bug.

And whereas with the first version of the code we would immediately

notice that it did (because the software hung inside an infinite loop),

now it may not be at all obvious. It will probably bite us at some point

in the future and be very difficult to diagnose.

Another example. Imagine that we’re writing a function that takes a

string and returns true if it’s all uppercase, false otherwise. Here’s one

possible implementation in Java:

public static boolean allUpper(String s) {

CharacterIterator i = new StringCharacterIterator(s);

for (char c = i.first(); c != CharacterIterator.DONE; c = i.next())

if (Character.isLowerCase(c))

return false;

return true;

}

A perfectly reasonable function—but if for some reason we pass null to

it, our software will crash. With this in mind, some developers would

add something along these lines to the beginning:

if (s == null)

return false;

So now the code won’t crash—but what does it mean to call this func-

tion with null? There’s an excellent chance that any code that does so

contains a bug, which we’ve now masked.

Assertions provide us with a very simple solution to this problem.

Wherever you find yourself writing defensive code, make sure that you

protect that code with assertions.

So now our protective code at the start of allUpper() becomes:

assert s != null : "Null string passed to allUpper";

if (s == null)

return false;

And our earlier for-loop becomes:

for (i = 0; i < iteration_count; ++i)

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pbdp

ASSUMPTIONS AND ASSERTIONS 167

Assertions and Language Culture

A programming language is more than just syntax and seman-
tics. Each language has one or more communities built up
around with their own idioms, norms, and practices. How (or
if) assertions are habitually used in a language depends in part
on that community.

Although assertions can be used in any language, they are
more widespread in the C/C++ community than any other
of the major languages. In particular, they aren’t particularly
widely used in Java, probably because they only became offi-
cially supported in Java 1.4 (although there are signs that asser-
tions are catching on within the wider Java community with
JVM-based languages such as Groovy and Scala encouraging
their use).

In part, this may be because there are more opportunities for
things to go wrong in C/C++. Pointers can wreak havoc if used
incorrectly, strings and other data structures can overflow. These
kinds of problems simply can’t occur in languages like Java and
Ruby.

But that doesn’t mean that assertions aren’t valuable in these
languages—just that we don’t need to use them to check for
this kind of low-level error. They’re still extremely useful for check-
ing for higher-level problems.

«Body of loop»

assert i == iteration_count;

We now have the best of both worlds—robust production software and

fragile development/debugging software.

Assertion Abuse

As with many tools, assertions can be abused. There are two com-

mon mistakes you need to avoid—assertions with side-effects and using

them to detect errors instead of bugs.

Cast your mind back to our HttpMessage class and imagine that we want

to implement a method which removes a header we added previously.

If we want to assert that it’s always called with an existing header, we

might be tempted to implement it as follows (the Java remove() method

returns null if the key doesn’t exist):

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pbdp

DEBUGGING BUILDS 168

public void removeHeader(String name) {

assert headers.remove(name) != null;

}

The problem with this code is that the assertion contains a side-effect.

If we run the code without assertions enabled, it will no longer behave

correctly because, as well as removing the check for null, we’re also

removing the call to remove().

Better (and more self-documenting) would be to write it as:

assert headers.containsKey(name);

headers.remove(name);

An assertion’s task is to check that the code is working as it should,

not to affect how it works. For this reason, it’s important that you test

with assertions disabled as well as with assertions enabled. If any side-

effects have crept in, you want to find them before the user does.

Assertions are not an

error-handling

mechanism

Assertions are a bug-detection mechanism,

not an error-handling mechanism. What is the

difference? Errors may be undesirable, but

they can happen in bug-free code. Bugs, on

the other hand, are impossible if the code is

operating as intended. Here are some examples of conditions that

almost certainly should not be handled with an assertion:

• Trying to open a file and discovering that it doesn’t exist.

• Detecting and handling invalid data received over a network con-

nection.

• Running out of space while writing to a file.

• Network failure.

Error-handling mechanisms such as exceptions or error codes are the

right way to handle these situations.

We’ve mentioned that assertions are typically disabled in production

builds and enabled in development or debug builds. But what exactly

is a debug build?

10.2 Debugging Builds

Many teams find it helpful to create a debugging build, which differs

from a release build in various ways designed to help reproduce and

diagnose problems.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pbdp

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Debug It!’s Home Page

http://pragprog.com/titles/pbdp

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/pbdp.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/pbdp
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/pbdp
www.pragprog.com/catalog

	Before the Bug Bites
	Teach Your Software to Debug Itself
	Transparent Software
	Automatic Bug Detection

