
Extracted from:

Debug It!
Find, Repair, and Prevent Bugs in Your Code

This PDF file contains pages extracted from Debug It!, published by the Pragmatic

Bookshelf. For more information or to purchase a paperback or PDF copy, please visit

http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2009 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2009 Paul Butcher.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-28-X

ISBN-13: 978-1-934356-28-9

Printed on acid-free paper.

B1.0 printing, June 17, 2009

Version: 2009-6-16

http://www.pragprog.com

Chapter 3

Diagnose
Diagnosis is the key element of debugging. This is where the rubber

meets the road and you arrive at the understanding of the root cause

of the behavior you’re seeing.

In this chapter, we will cover:

• The core diagnostic process.

• Different types of experiment, and what makes a good experiment.

• Useful stratagems.

3.1 Stand Back—I’m Going to Try Science

Although you’re going to be using various tools and techniques, and

leveraging your software itself to help you, your primary asset is and

always will be your intellect. Diagnosis takes place within your mind,

not within your computer.

Balance creativity with

rigor

The mindset one needs to cultivate when

debugging is similar (because the problem is

similar) to that of a detective solving a crime

or a scientist investigating a new phenomenon.

Open-minded at the same time as methodical, creative at the same time

as thorough—as with so many other aspects of software development,

effective bug fixing is all about finding the appropriate balance between

these apparently contradictory demands.

STAND BACK—I’M GOING TO TRY SCIENCE 50

The scientific method can work in two different directions.1 In one

case, we start with a hypothesis and attempt to create experiments,

the results of which will either support or refute it. In the other, we

start with an observation that doesn’t fit with our current theory and

as a result modify that theory or possibly even replace it with something

completely different.

In debugging, we almost always start from the latter. Our theory (that

the software behaves as we think it does) is disproved by an observa-

tion (the bug) that demonstrates that we are mistaken. In the words of

Thomas Huxley, “The great tragedy of Science—the slaying of a beauti-

ful hypothesis by an ugly fact.”

A Debugging Method

Having discovered that things aren’t as you believed them to be, your

task is to modify your understanding of the software until you do

understand what’s really going on. To do that, you operate in the other

of the two possible directions—create a hypothesis that might provide

an explanation and then construct experiments to test it.

So here’s our idealized process (see Figure 3.1, on the next page):

1. Examine what you know about the software’s behavior and con-

struct a hypothesis about what might cause it.

2. Design an experiment that will allow you to test its truth (or oth-

erwise).

3. If the experiment disproves your hypothesis, come up with a new

one and start again.

4. If it supports your hypothesis, keep coming up with experiments

until you have either disproved it, or reached a high enough level

of certainty to consider it proven.

All well and good, but rather abstract. How do you translate this into

action?

Different Types of Experiment

Your starting point is the reproduction we discussed at length in the

last chapter. From that starting point, there are several different types

1. Students of the History and Philosophy of Science will realize that I am skating over

many subtleties.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pbdp

STAND BACK—I’M GOING TO TRY SCIENCE 51

Start

Construct a

hypothesis

Hypothesis

disproved?

Construct an

experiment

No

Need more

evidence?

Yes

Yes

Stop

No

Figure 3.1: A Debugging Method

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pbdp

STAND BACK—I’M GOING TO TRY SCIENCE 52

of experiment that you can run—each of which involves changing one

aspect of how you reproduce the problem:

• You can examine some aspect of the software’s internal state

(either by instrumenting it directly or by running it under a debug-

ger).

• You can modify some aspect of how you run the software (modified

inputs, for example, or an alternative environment) and see if it

behaves differently.

• You can change the logic encoded within the software itself and

examine the effect of that change.

Which of these you choose depends upon the nature of your hypothesis,

and making the best choice comes down to experience and intuition.

Whichever you choose, however, the most important thing to bear in

mind is that your experiment must have a clear goal.

Experiments Must Prove Something

Experiments are a means to an end, not an end in themselves. There is

no point performing an experiment unless it proves something.

What is your experiment

going to tell you?

Before investing time and effort to construct

and run an experiment, ask yourself what it’s

going to tell you. What are the possible out-

comes? If none of those outcomes would move

you closer to your diagnosis, you need to come up with a different

experiment. Beware of confusing activity with progress—if an experi-

ment cannot increase your understanding, it’s a waste of your time.

You can design experiments that are intended to prove your hypothe-

sis, or to disprove it. It might seem counter-intuitive, but frequently the

latter are the more useful. In part, this is because it’s difficult to incon-

trovertibly prove something (just because you see what you expect to

see doesn’t mean that you’re seeing it for the reason you think you are),

but mainly it’s a question of psychology.

If you have a plausible explanation for what’s happening, it’s very easy

to talk yourself into seeing what you want to see. Playing devil’s advo-

cate and trying to disprove your hypothesis can be very productive,

helping you spot possible holes in the explanation that you wouldn’t

see otherwise. If, after you’ve tried your hardest to disprove it, its still

standing at the end, then you can have a lot of confidence that you’ve

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pbdp

STAND BACK—I’M GOING TO TRY SCIENCE 53

nailed it. And every once in a while you will surprise yourself and find

that something very different from what you thought is happening.

One Change at a Time

One of the basic rules of constructing experiments is that you should

only make a single change at a time.

Multiple changes lead

to misleading

conclusions

If you make a single change and see an effect,

you can be pretty certain that the one caused

the other.2 If you make more than one change,

however, it can be very difficult to be sure

which change resulted in which effect. Or the

changes may interact in unpredictable ways. At best, this might mean

that you are unable to conclude anything useful. At worst you may

reach misleading conclusions that lead you down completely the wrong

path.

This rule applies to any kind of change—changes to the source, the

environment, input files and so on. Anything, in fact, that might have

an effect on the software.

For some reason this principle is forgotten surprisingly frequently—I

don’t know how many times I’ve seen someone make several changes all

at once and then try to make sense of the results afterwards. Although

it can feel as though you’re saving yourself time by making several

changes simultaneously, all that you really achieve is the risk of invali-

dating your results. Maintain your discipline and avoid falling into this

trap.

Finally, once you see a change in behavior, undo whatever apparently

caused it and verify that the behavior returns to what it was before-

hand. This is a very powerful indication that you’re looking at cause

and effect rather than serendipity.

Keep a Record of What You’ve Tried

If you find yourself working on a bug that takes days or weeks to track

down, you will end up carrying out many different experiments. Ideally

each one will eliminate a set of possible causes and eventually you will

zero in on the root cause.

2. Not completely certain—a changing underlying system can get in the way of this kind

of reasoning—but it’s an excellent starting hypothesis.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pbdp

STAND BACK—I’M GOING TO TRY SCIENCE 54

When the diagnosis goes on this long and involves this many experi-

ments, there is a danger that you will lose track of what you’ve done.

This may mean that you waste time investigating possibilities that have

already been eliminated by previous experiments, or it could result in

you heading down a blind alley. In the worst case, it could lead you to

a broken conclusion and subsequent misdiagnosis.

Periodically review what

you’ve already tried

and learned

The best defense is to maintain a record of the

experiments you’ve tried, and what the results

were. This doesn’t have to take a long time or

include huge amounts of detail—just enough

to ensure that you don’t forget what you’ve

already done. Periodically review your notes to refresh your memory

and help you identify the most promising next steps.

Many developers find it helpful to maintain a daybook. They might use

it to record notes from meetings, design sketches, a record of the steps

necessary to install a piece of software—anything, in fact, that might

prove useful to refer to in the future. A daybook can be an excellent

place to record your experiments. Or alternatively, if you prefer to keep

your notes electronically, you might consider keeping a personal Wiki.

Ignore Nothing

Occasionally you will notice odd behavior. You run an experiment,

expecting one of result A or result B, and instead get result C. Or you

work through a set of instructions about how to reproduce the bug, and

the software does something very different from what you expect.

It can sometimes be tempting to shrug it off as “one of those things” and

try a different tack. Don’t! The software is trying to tell you something

and it’s in your interest to listen.

If something unexpected happens, it means that some assumption

you’re making is broken. This might be an assumption about how the

software should behave, what the bug you’re trying to hunt down is,

how you’ve constructed your experiment, or anything else. If you have

a broken assumption, then the most valuable thing that you can do is

to stop, identify and fix it. If you don’t, then all bets are off and you

can’t trust any conclusions you reach.

This kind of thing can turn out to be a blessing in disguise—a short-cut

to what’s really going on. Getting to the bottom of unexpected behavior

can save you a huge amount of wasted time chasing will-o-the-wisps.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pbdp

STAND BACK—I’M GOING TO TRY SCIENCE 55

Joe Asks. . .

How else Can a Daybook Help when Debugging?

As well as maintaining a record of your experiments, a daybook
can also be useful for:

• Writing out hypotheses. Getting things onto paper can
help identify flaws in assumptions, especially when the
hypothesis is complex.

• Keeping track of details like stack traces, argument values
and variable names. Not only does this help with finding
things again, but it also helps you communicate with col-
leagues when explaining the problem, avoiding the need
to rely upon memory.

• Keeping a list of ideas to try. Often you will notice some-
thing else you want to investigate, or a possible followup
experiment will occur to you, but you don’t want to aban-
don the current experiment to pursue it. A “to do” list
ensures that you don’t forget to come back to it later.

• Doodling when you need to take your mind off the prob-
lem.

Anything that you don’t

understand is potentially

a bug

Even if the odd behavior you notice doesn’t

have any bearing on the problem at hand, the

fact that you’ve discovered something unex-

pected is valuable. Anything that you don’t

understand is potentially a bug. Once you’ve

demonstrated to your satisfaction that it isn’t relevant to what you’re

working on, feel free to put it aside, but don’t forget about it. Keep

a record (file a bug report, perhaps) and come back to it. Very often,

things discovered in passing like this prove to be real issues that need

fixing. And you would much rather fix them having discovered them

this way, than wait until they’re reported by an irate customer.

Sneaky!

I was crawling through yesterday’s server logfile gathering evidence that

would help me diagnose the problem I was working on. In passing, I

noticed that one of our users seemed to be having connection

problems—he was logging out and then back in over and over again.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pbdp

STRATAGEMS 56

This had nothing whatsoever to do with the problem I was chasing, and I

very nearly let it pass. Connection problems aren’t that unusual, after all.

But something didn’t feel right—the pattern was too regular. My “spidey

sense” was tingling.

Sure enough, it turns out that the user in question had found a sneaky

way to bypass one of the security mechanisms implemented by the

software (which rationed how much of a certain resource each user could

consume). By logging out and then immediately back in again, he could

reset his quota. An easy bug to fix, now that we knew about it.

3.2 Stratagems

Although every bug is different, there are certain techniques and

approaches that have repeatedly proven their value in tracking down

a wide range of problems. They won’t suffice for every problem you find

yourself faced with, but every programmer should have them at their

fingertips.

Instrumentation

Diagnosis is all about information—divining precisely the state of, and

the execution path taken by the software. Although there are many

ways through which you can either infer or derive this information,

by far the simplest and most direct is adding instrumentation to the

software itself.

Instrumentation is code that doesn’t affect how the software behaves,

but instead provides insight into why it behaves as it does. In the last

chapter, we already discussed the most common and important type

of instrumentation, logging. Possibly the oldest debugging technique is

adding ad-hoc logging to the code,3 in order to confirm or refute our

beliefs about what it’s doing.

The full facilities of the

language are at your

disposal

Instrumentation isn’t limited to simple output

statements, however—you have the full facil-

ities of the language at your disposal. You

can collect and collate data, evaluate arbitrary

code and test for relevant conditions—the only

limit is your imagination.

3. Often called printf() debugging after the C function of the same name.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pbdp

STRATAGEMS 57

Beware of Heisenberg

One of the lessons of quantum physics is that the act of observ-
ing a system can change the system itself. Computer software
isn’t quantum mechanical (not yet, anyway) but we still need
to be wary.

Instrumenting software intrinsically involves changing it, which
raises the specter of affecting, instead of simply observing, its
behavior. This is dangerous during diagnosis, because introduc-
ing an unintentional change during a series of experiments can
easily lead to you draw invalid conclusions.

Fundamentally speaking, there is no way that you can guar-
antee to avoid introducing some side-effects. The fact that
you’ve modified the source code means that the layout of the
object code in memory and the timing of its execution will be
affected. Happily, most of the time this remains a purely hypo-
thetical problem—as long as you’re careful to avoid the more
obvious side-effects, you can normally ignore the issue.

Nevertheless, it is very good practice to keep the source code
as close to its pristine form as possible. Don’t allow failed exper-
iments, along with their possible side-effects, to accumulate
over time. Keeping things neat also helps ensure that the code
remains easy (or at least, no harder) to understand and will help
to ensure that you don’t check in unintended changes when
you eventually come to fixing the problem.

Let’s look at an example. Imagine that you’re trying to track down a

bug in some Java code that traverses a data structure, processing each

node in turn:

while(node != null) {

node.process();

node = node.getNext();

}

You’re seeing behavior that suggests that nodes are being processed

more than once (in other words, getNext() is returning one or more

nodes more than once). It’s not clear which nodes are being processed

more than once, however. One way to find the problem would be to

instrument the code as follows:

Ê HashSet processed = new HashSet();

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pbdp

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Debug It!’s Home Page

http://pragprog.com/titles/pbdp

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/pbdp.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/pbdp
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/pbdp
www.pragprog.com/catalog

	The Life-Cycle of a Bug
	Diagnosis
	Stand Back---I'm Going to Try Science!
	Stratagems

