
Extracted from:

Pragmatic Guide to Git

This PDF file contains pages extracted from Pragmatic Guide to Git, pub-
lished by the Pragmatic Bookshelf. For more information or to purchase

a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing).
This is available only in online versions of the books. The printed versions

are black and white. Pagination might vary between the online and
printer versions; the content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying,

recording, or otherwise, without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their
products are claimed as trademarks.Where those designations appear in this book,
and The Pragmatic Programmers, LLC was aware of a trademark claim, the desig-
nations have been printed in initial capital letters or in all capitals. The Pragmatic
Starter Kit, The Pragmatic Programmer, Pragmatic Programming, Pragmatic
Bookshelf, PragProg and the linking g device are trademarks of The Pragmatic
Programmers, LLC.

Every precautionwas taken in the preparation of this book.However, the publisher
assumes no responsibility for errors or omissions, or for damages that may result
from the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your
team create better software and have more fun. For more information, as well as
the latest Pragmatic titles, please visit us at http://pragprog.com.

The team that produced this book includes:

Susannah Davidson Pfalzer (editor)
Potomac Indexing, LLC (indexer)
Kim Wimpsett (copyeditor)
Steve Peter (typesetter)
Janet Furlow (producer)
Juliet Benda (rights)
Ellie Callahan (support)

Copyright © 2010 Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored
in a retrieval system, or transmitted, in any form, or by
any means, electronic, mechanical, photocopying,
recording, or otherwise, without the prior consent of
the publisher.

Printed in the United States of America.
ISBN-13: 978-1-934356-72-2
Printed on acid-free paper.
Book version: P3.0—January 2012

http://pragprog.com

Introduction
Theworld of version control systems (VCSs) has undergone
a major shift over the past few years. Fast, reliable, and
approachable distributed version control systems (DVCSs)
such as Git have burst onto the scene and changed the
landscape of open source software development and corpo-
rate software workflows.

This book is your guide to this new paradigm. It’s not a
complete reference; instead, it focuses on getting you up and
running quickly. Pragmatic Guide to Git covers the 95 percent
of Git that you’ll use at least once a week, as well as a few
tasks that will come in handy but aren’t used as often.

Git started when the license of VCS software that the Linux
kernel used to track changeswas revoked.After investigating
the other alternatives, Linus Torvalds decided he couldwrite
a better version control system in a few weeks than what
currently existed, so he set off to do that.

Git, then in a very rough form, was the result of that two
weeks of hacking together some shell scripts back in the
spring of 2005. Linus had to calculate pieces of the commits
by hand on the first few commits (commits are the changes
Git tracks for you). Since those original hand-rolled commits,
Git has become the leader in the field of DVCS.

Who Is This Book For?

This book is geared for someone new to Git who is looking
to get up to speed quickly. This book is for you if you’re
status.untracked.start familiar with another VCS such as
Subversion and are looking for a quick guide to the Git
landscape or if you’re a quick study and want a concise
guide. It’s organized by task tomake it easy to translate from

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/pg_git
http://forums.pragprog.com/forums/pg_git

the task you need to accomplish to how the process works
in Git.

If you’ve never used a version control system before and
thought Subversion was something you did to overthrow
governments, this book will get you up and running with
Git. For much more detail on version control concepts, you
should read Pragmatic Version Control Using Git,1 my other
book, as well.

How to Read This Book

This book is organized in parts to guide you from starting
out throughmore complex situations, with each part broken
down into tasks. Tasks follow a specific formula: the left
page explains the task and the commands related to it, and
the right page gives you the raw commands with a little bit
of information about them and a cross-reference to related
tasks.

You can read this book in paper form as an open book to see
the tasks side by side, but it’s also an excellent reference in
digital form, especially when searching for a particular Git
task.

If you’re reading a digital version of this book on a computer
with a large enough display, I recommend setting your
reader to display two pages side by side instead of a single
page. That gives you the same visual that’s intended in the
book.

On your first pass, I suggest that you read the introductions
to each part. They give you a broad overview of how to
approach each part of theGit workflow, aswell as a synopsis
of the tasks contained in that part.

Armed with high-level information, you can determine
where to dive in. You can read this book from start to finish
or cherry-pick the tasks relevant to what you’re trying to
accomplish.

The parts of this book are organized to walk you through
the various phases of use in Git.

1. http://pragprog.com/titles/tsgit/

vi • Introduction

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/tsgit/
http://pragprog.com/titles/pg_git
http://forums.pragprog.com/forums/pg_git

• Part I, Getting Started, starts with the absolute basics—
installing and configuring Git and creating your first
repository.

• Part II, Working with Git, covers the basic commands
you need as part of your day-to-day interaction with
Git by yourself. These are the building blocks, and
they’re a must-read if this is your first time using Git.

• Part III, Organizing Your Repository with Branches and
Tags, introduces branches, a powerful and central part
ofGit that’s necessary for understanding howeverything
works together.

• Part IV, Working with a Team, covers the most powerful
aspect of any VCS: collaboratingwith other developers.
This part gets you up to speed on how to share your
work with other developers and retrieve changes from
them.

• Part V, Branches and Merging Revisited, builds on the
information in Part III and teaches you how to handle
it when things go wrong, as well as some of the more
complexways to handlemerging andmoving branches
around.

• Part VI,Working with the Repository’s History, introduces
you to all the history you’ve been generating. Using this
information, you can figure outwhat another developer
(or maybe even you) was thinking when you made a
particular change.

• Part VII, Fixing Things, shows you howGit can help you
fix things in your repository—be that commits that need
to be adjusted or finding bugs in your code.

• Part VIII,Moving Beyond the Basics, introduces you to a
few concepts that don’t fit into the normal everyday
workflow but are useful when they’re needed.

There are diagrams throughout this book. Whenever you
see a circle, it represents a commit—with the exception of
Figure 2, Shared and distributed repository layout with three de-
velopers, on page xiii, where the circles represent repositories.

• Click HERE to purchase this book now. discuss

Introduction • vii

http://pragprog.com/titles/pg_git
http://forums.pragprog.com/forums/pg_git

Thismatches the style used throughout theGitmanualwhen
it shows example repository structures to explain commands.
In addition to the standard graphical diagrams throughout,
in some places I’ve opted for a plain-text diagram to intro-
duce you to the Git manual diagram style.

Throughout the book you’ll see examples of the output you
can expect Git to generate for a given command. Keep in
mind that your output won’t be exactly the same because
of the way Git keeps track of commit IDs—more on that in
a minute.

Several commands don’t generate any output after they run
successfully, though. For these commands, I include an
empty prompt> after the successful command to show that
there is no output.

The first reference to each new term includes an explanation
of what the term means. If you read the book from start to
finish, you’ll know all of the terms from previous introduc-
tions to them.

Did you forget a term or are you using the book as a refer-
ence and not reading it straight through? You’re covered
there, too. You can refer to Appendix 1, Glossary, on page
?; there you’ll get explanations of all the common—and
some not so common—jargon you’ll encounter in this book
and in your adventures in Git.

What Version of Git to Use

I used the 1.7.x version of Git while writing the majority of
this book. All of the commands as of this writing work with
1.7.2.1 and should work with the majority of Git 1.6.x ver-
sions.

The installationmethodsmentioned in Task 1, Installing Git,
on page ? all have recent versions of Git available, so make
sure you’re running a recent version, and you won’t have
any trouble following along. You can run git --version from
the command line to see what version you have.

Before we dive into the tasks, let’s talk a bit about Git and
what makes it unique.

viii • Introduction

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/pg_git
http://forums.pragprog.com/forums/pg_git

How Git Is Different

Git is a bit different from traditional version control systems.
If you’re coming to Git from another centralized system, this
section explains some of the differences and gets you think-
ing in Git style.

Distributed vs. Centralized

There are generally two models in version control systems:
centralized and distributed. Tools such as Subversion typi-
cally require a network connection to a centralized server.
You make a change to your project and then commit that
change, which is sent to the centralized server to track.
Other developers can then immediately access your changes.

Distributed version control systems, such as Git, break the
process of committing code and sharing it with others into
two parts. You can commit your code to your local private
repository without having to talk to a centralized server,
removing the need to be connected to a network to make a
change.

Private vs. Public Repositories

Each developer who is sharing code with other developers
has at least two repositories: a private and a public reposito-
ry. The private repository is the one that exists on your
computer and is the one you make commits to.

Public repositories are the repository that you use to share
your changes with other developers. Multiple developers
might have access to push changes to the same public
repository, or each developer may have their own public
repositories.

You can push to and fetch from multiple repositories. This
allows you to pull in changes from another developer who’s
working on the same project.

Commit IDs Instead of Revision Numbers

Centralized VCS have the benefit of having one system that
doles out revision numbers. Because everyone is committing
and sharing their code in one repository, that repository can
control what numbers it assigns to a particular commit.

• Click HERE to purchase this book now. discuss

Introduction • ix

http://pragprog.com/titles/pg_git
http://forums.pragprog.com/forums/pg_git

That model doesn’t work in a decentralized system. Who’s
to say which commit is actually the second commit, me or
you? Git uses commit IDs that are SHA-1 hashes instead.
The hash is based on the code, what came before it, who
made the commit, when theymade it, and a few other pieces
ofmetadata. The chances are incredibly small of there being
two different commits with the same commit ID.

Forking Is Good

For the longest time, forking a project was a bad thing. It
drained resources away from themain project, andmerging
changes between the twoprojectswas time-consumingwhen
possible.

Git’s superior merge capabilities, rooted in its distributed
nature, make merging changes from a “forked” repository
trivial. In fact, the idea of forking is so ingrained in the Git
community that one of the largest Git communities online,
GitHub,2 is built around the concept. To offer your changes,
you fork a repository, commit your changes, and then ask
the original developer to pull your changes in through a pull
request.

Instead of an indicator of a project suffering from internal
strife, the number of forks on a repository is considered the
sign of an active community working on a project.

The Git Workflow

Working by yourself on a project with no version control,
you hack a little, test it out and seewhether it doeswhat you
want, tweak a few more lines of code, and repeat. Adding
version control into the mix, you start committing those
tweaks to keep a record of them. The high-level overview
of Git’s general workflow is shown in Figure 1, The Git
workflow, on page xi.

My Standard Workflow

My standard dayworkingwithGit goes something like this:
I fetch all the changes from the other developers onmy team
to make sure I’m working with the latest code, and then I

2. http://github.com/

x • Introduction

• Click HERE to purchase this book now. discuss

http://github.com/
http://pragprog.com/titles/pg_git
http://forums.pragprog.com/forums/pg_git

Fetch Changes
from the Team

Make Changes
& Commit Them

(repeat until done)

Review CommitsShare Changes
with the Team

Start your day here

Figure 1— The Git workflow

start working on the user stories I have for the day. As I
make changes, I create a handful of commits—a separate
commit for each change that I make.

Occasionally, I end up with several separate changes that
all need to be committed. I’ll break out Git’s patch mode,
stage, and finally commit each set of changes separately.

Once I have the feature complete, I give the commits I’ve
created a quick review to make sure all the changes are
necessary. At this point I look for commits that can be com-
bined and make sure they are in the most logical order.

Finally, once I have those commits ready, I share those
commits by pushing them (push is the term for sending
commits to another repository) back upstream tomy public
repository so the rest of the team can view them and inte-
grate them with their repositories.

Small Teams with a Shared Repository

Many small teams use Git like a traditional version control
system. They have onemain repository that all the develop-
ers can send changes to, and each developer has their own
private repository to track their changes in.

• Click HERE to purchase this book now. discuss

Introduction • xi

http://pragprog.com/titles/pg_git
http://forums.pragprog.com/forums/pg_git

You make your changes locally; then when you’re ready to
share them with other developers, you push them back to
the repository you all share.

If someone else has shared their changes since the last time
you updated from the shared repository, you will get an
error. You must first get the changes from the shared
repository and integrate them into your repository through
a process calledmerging. Once the changes are merged, you
can push your changes to share with the rest of the team.

Git in Open Source

Each open source project has its own methods of accepting
changes. Some projects use a fully distributed model where
only one person can push changes to the main repository,
and that person is responsible for merging changes from all
the contributors into the main repository.

Having only one person capable of pushing changes is often
too demanding a job for a large open source project. Many
have a main repository that all of the committers can send
changes to.

Themain developers encourage peoplewho are just starting
out to fork their project—create a copy of the repository
somewhere else—so themaindevelopers andothermembers
of the community can review their changes. If they’re accept-
ed, one of the main contributors merges them back into the
project’s repository.

These different scenarios constitute different repository
layouts. Git allows several different layouts, and covering
them deserves a section to itself.

Repository Layouts

The distributed nature of Git gives you a lot of flexibility in
how you manage your repositories. Every person on your
team has their own private repository—the repository that
only that person can update. However, there are two distinct
ways to handle public repositories. For a visual explanation
of these layouts, see Figure 2, Shared and distributed repository
layout with three developers, on page xiii.

xii • Introduction

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/pg_git
http://forums.pragprog.com/forums/pg_git

YouBob Alice

Shared
Repository

You

Bob Alice

Push

Pull

Distributed
Repositories

Gray circles are the private repositories; outlined circles
are public repositories.

Figure 2— Shared and distributed repository layout with three
developers.

One method is the fully distributed model. In this, each
developer has their ownpublic repository that the developer
uses to publish their changes to. All the other developers on
the team then pull changes from everyone else’s repositories
to keep current.

In practice,most teams have a lead developerwho is respon-
sible for making sure all the changes are integrated. This
limits the number of repositories you and your team have
to pull changes from to one, but it increases the workload
on the person who has to integrate everyone’s changes.

Another method is the shared repository model, where all
developers can push to a shared repository. This resembles
the standard centralized model and is often adopted by
teams when they first start using Git—it requires the least
amount ofmental overheadwhen it comes to thinking about
where a change is shared.

You canmix both of these aswell to create a hybrid solution.
Use a shared repository for all of the code that’s ready for
production, and each developer maintains their own public
repository for sharing code that’s still a work in progress.
This is themodel I’ve employed successfully atmy company
and that’s used by many open source projects—push final
changes to the main repository, and keep experimentation
in your own repository.

• Click HERE to purchase this book now. discuss

Introduction • xiii

http://pragprog.com/titles/pg_git
http://forums.pragprog.com/forums/pg_git

Online Resources

Several online resources are available for this book. The
book’s website is the jumping-off point for all of them:

http://pragprog.com/titles/pg_git/

From here, you can view the errata (and add any errors you
find) and head to the book’s forum where you can discuss
and ask questions—both about the book and about Git.

Now that you knowwhat this book is about, let’s get started.

xiv • Introduction

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/pg_git/
http://pragprog.com/titles/pg_git
http://forums.pragprog.com/forums/pg_git

