
Extracted from:

Pragmatic Guide to JavaScript

This PDF file contains pages extracted from Pragmatic Guide to JavaScript, published by the
Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy, please visit

http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is available only
in online versions of the books. The printed versions are black and white. Pagination might vary

between the online and printer versions; the content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means,
electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com




TEMPORARILY DISABLING A SUBMIT BUTTON 60

18 Temporarily Disabling a
Submit Button

Sometimes our forms take a while to be processed on the server side.
Perhaps we’re uploading a large file using a good ol’ <input type="file"... />

field, or the server is just busy for some reason. At any rate, we do not want
our user to resubmit the form while we’re processing it already.
Double-submits are just irritating, you know?

To avoid this, we can react to our form being submitted by disabling any UI
means of submitting it, which boils down to <input> or <button> tags with
type="submit" or type="image" attributes. Because a few browsers (such as
our beloved MSIE) do not handle CSS attribute selectors well, we should
“tag” those elements with a specific class, say submit, and use it to select
elements we intend to disable.

On the facing page, the first script shows the minimum Prototype-based code
for that. It’s fairly straightforward.

You will likely want to go the extra mile and add some further UI decoration
to your form as it is submitting; not all browsers render disabled fields in a
clear visual style, and perhaps you also want to stress the fact that something
is going on. (You’re not just disabling that thing to be obnoxious, are you?)

The second script illustrates adding a custom class to our disabled <input>
tags. Because the UI update that results from applying CSS is not as
“built-in” as a disabling call, we also want to make sure our browser can
“take a breath” before we have it submit the form (at which time it’s likely to
ignore any further visual update and just plow ahead with the submission).
To solve this common problem, we delay( ) the submit( ) call by just a tenth
of a second.

Also notice the that = this closure trick in our JavaScript code here. As you
may know, calling a function (in this case, the one we end up delay( )ing)
can lose our current binding—the value this refers to. Instead of forcing such
a binding, which requires an extra layer of function wrapping and is
therefore pretty costly, we rely on closures to let the code inside our ad hoc
anonymous function retain a reference to our original this (the form being
submitted) in order to call submit( ) on it in due time.21

21. Queasy about JS function bindings? Check out my ALA article at
http://www.alistapart.com/articles/getoutbindingsituations/ for details. Not too sure about
closures and how they’re useful? My pal Juriy “Kangax” Zaytsev wrote a great article about it at
http://msdn.microsoft.com/en-us/scriptjunkie/ff696765.aspx.

CLICK HERE to purchase this book now.

http://www.alistapart.com/articles/getoutbindingsituations/
http://msdn.microsoft.com/en-us/scriptjunkie/ff696765.aspx
http://www.pragprog.com/titles/pg_js


TEMPORARILY DISABLING A SUBMIT BUTTON 61

Disable on the submit event.

Download form/submit/submit.js

function preventMultipleSubmits() {

this.select('.submit').invoke('disable');

}

document.observe('dom:loaded', function() {

$('commentForm').observe('submit', preventMultipleSubmits);

});

Download form/submit/index.html

<form id="commentForm" action="post_comment.php">

<p>

<label for="edtText">Your text</label>

<textarea id="edtText" name="text" cols="40" rows="5"></textarea>

</p>

<p><input type="submit" class="submit" value="Send" /></p>

</form>

Use classes for extra decoration (a bit of flourish).

Download form/submit/submit.js

function preventMultipleSubmits(e) {

if (!this.hasClassName('submitting')) {

e.stop();

}

this.addClassName('submitting').select('.submit').invoke('disable');

var that = this;

(function() { that.submit(); }).delay(0.1);

}

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/pg_js/code/form/submit/submit.js
http://media.pragprog.com/titles/pg_js/code/form/submit/index.html
http://media.pragprog.com/titles/pg_js/code/form/submit/submit.js
http://www.pragprog.com/titles/pg_js


PROVIDING INPUT LENGTH FEEDBACK 62

19 Providing Input Length Feedback

A common source of frustration when filling in forms is to suddenly see the
text input stop dead, even when there was some text warning us of the
maximum length. Not only that, but did you know that <textarea> has no
maxlength= attribute? Seriously. It’s not valid HTML and will be blissfully
ignored (unless you’re fortunate enough to be able to use HTML5).

So, to provide a unified way to specify maximum lengths, we can rely on
dedicated CSS classes for, er, “data storage.” They will use a two-part name:
first a maxLength prefix, then a positive integer, stating the maximum length
we want. See the markup on the facing page.

Then we can use JavaScript to do the following:

1. Dynamically decorate the form zones (I’ll assume paragraphs, for the
sake of brevity) containing these elements (the facing code adds a
class to the paragraph), and then dynamically create the placeholder
for remaining-length feedback.

2. Initialize the feedback zone to the current state.

3. Bind appropriate event listeners for as-you-type feedback.

4. Position the feedback zone (I put it under the bottom-right corner of
its matching field here) and add it to the document, now that it’s ready
for prime time!

Now whenever typing occurs, we just need to update the feedback, and if we
hit or exceed the maximum length (something impossible on a <textarea>),
we’ll backpedal to the maximum allowed length.

Note a couple of tricks in this code:

• We listen for both keyup and keypress in order to react to noncharacter
keys (deletions, cuts, and pastes, mostly) and character keys.
Listening to keydown would be useless because it occurs before the
text changes, and we have no reliable way of determining across
browsers and keyboard layouts whether the text will change.

• To avoid recomputing the maximum length at every keystroke, we
cache it during setup. To associate maximum lengths with our fields,
we use a JavaScript-based associative array between the fields’ id=

attributes22 and the fields themselves. This is lighter weight than using
expando properties.

22. We use Prototype’s identify( ) here to make sure our element has an id=.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pg_js


PROVIDING INPUT LENGTH FEEDBACK 63

Specify maximum lengths through markup.

Download form/feedback/index.html

<p>

<label for="edtDescription">Description</label>

<textarea id="edtDescription" name="description" cols="40"

rows="5" class="maxLength200"></textarea>

</p>

Set up feedback for maximum-length fields.

Download form/feedback/feedback.js

var maxLengths = {};

function bindMaxLengthFeedbacks() {

var mlClass, maxLength, feedback;

$$('*[class^=maxLength]').each(function(field) {

field.up('p').addClassName('lengthFeedback');

mlClass = field.className.match(/\bmaxLength(\d+)\b/)[0];

maxLength = parseInt(mlClass.replace(/\D+/g, ''), 10);

feedback = new Element('span', { 'class': 'feedback' });

maxLengths[field.identify()] = [maxLength, feedback];

updateFeedback(field);

field.observe('keyup', updateFeedback).

observe('keypress', updateFeedback);

feedback.clonePosition(field, { setHeight: false,

offsetTop: field.offsetHeight + 2 });

field.insert({ after: feedback });

});

}

Give feedback on the fly.

Download form/feedback/feedback.js

function updateFeedback(e) {

var field = e.tagName ? e : e.element();

var current = field.getValue().length,

data = maxLengths[field.id], max = data[0],

delta = current < max ? max - current : 0;

data[1].update('Remaining: ' + delta);

if (current > max) {

field.setValue(field.getValue().substring(0, max));

}

}

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/pg_js/code/form/feedback/index.html
http://media.pragprog.com/titles/pg_js/code/form/feedback/feedback.js
http://media.pragprog.com/titles/pg_js/code/form/feedback/feedback.js
http://www.pragprog.com/titles/pg_js


The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles continue
the well-known Pragmatic Programmer style and continue to garner awards and rave reviews. As
development gets more and more difficult, the Pragmatic Programmers will be there with more
titles and products to help you stay on top of your game.

Visit Us Online
Pragmatic Guide to JavaScript

http://pragprog.com/titles/pg_js
Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates
Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community
Read our weblogs, join our online discussions, participate in our mailing list, interact with our
wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news
Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available for
purchase at our store: pragprog.com/titles/pg_js.

Contact Us
Online Orders: www.pragprog.com/catalog
Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/pg_js
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/pg_js
www.pragprog.com/catalog



