
Extracted from:

Pragmatic Guide to Subversion

This PDF file contains pages extracted from Pragmatic Guide to Subversion, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy, please visit

http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is available only

in online versions of the books. The printed versions are black and white. Pagination might vary

between the online and printer versions; the content is otherwise identical.

Copyright © 2010 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any means,

electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Part V

Branching, Merging, and Tagging

BRANCHING, MERGING, AND TAGGING 75

Real-world software projects are rarely straightforward and easy. The

team must develop the software, stabilize it ready to be released

into production, and support it once it’s in production. We’ve shown

how a team can use Subversion to collaborate during develop-

ment; this chapter will focus on how a team can release and sup-

port their software.

Usually when a team is preparing to release their software, they

want to focus on quality. The team might decide to fix bugs and

improve performance rather than adding new features. Generally,

though, the team will want to continue some forward momentum.

Maybe the team will split, with some developers working on stabiliz-

ing the code for release and everyone else developing as normal.

These two activities, stabilization and adding new features, gener-

ally cannot be done in the same code base. It’s very likely that the

new features will add instability to the software, which is exactly

what we don’t want when we’re trying to put a release into pro-

duction. The solution is to branch the code. Branching splits off a

new line of development where stabilization and bug fixing can be

done, while new features can continue to be added on the trunk.

The following diagram shows the branch and the trunk visually:

release branch

trunk

create
branch

stabilize
for

release

new features
develop

fix bugs

The first step is to create a branch. Branches are identified with a

name and are stored in the branches directory within the Subver-

sion repository. A branch starts out as an exact copy of the trunk

but can be modified independently. One team can work on the

branch, fixing bugs and stabilizing the code. Another team can

work on the trunk, adding new features. The two teams will never

accidentally surprise each other because they are working on dif-

ferent branches.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pg_svn

BRANCHING, MERGING, AND TAGGING 76

When working on a release branch, there are usually some bug fixes

or other improvements that we’d like to include in the trunk. Rather

than making a fix on the branch and then reimplementing the fix

on the trunk, Subversion allows us to merge the change from the

branch to the trunk. Subversion can do this because a branch is

much more than a simple copy of the files. Subversion remembers

the origin of the files on the trunk and the branch, and it uses their

shared ancestry to make merges easier and more automatic. The

dotted lines on the following diagram show changes being merged

from the release branch to the trunk:

release branch

trunk

create
branch

merge all
 branch changes

stabilize
for

release

new features
develop

fix bugs

The diagram shows a fairly standard release branch strategy but

does require a lot of merging because every change made on the

branch needs to be merged back to the trunk. It’s usually best to

reduce the number of merges in your branching strategy because

this reduces effort and the potential for a “forgotten” merge. We

can change the branching strategy to reduce merging as follows.

Stabilize for release before creating the branch, and then fix any

bugs on the trunk and merge them to the branch. The branch dia-

gram looks like this:

release branch

trunk

create
branch

merge
 bug fixes

stabilize
for

release

new features
developfix bugs

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pg_svn

BRANCHING, MERGING, AND TAGGING 77

You might already be familiar with branching and merging and

have your own strategy. This is fine; just make sure everyone on the

team understands where they need to make fixes and where they

should merge. If you’re not careful and disciplined, it’s possible to

“lose” a change. For example, if you fixed a bug on the release

branch but forgot to merge the fix to the trunk, the trunk still has that

bug. The QA team might see the bug in a later release and call it a

regression since from their perspective it was fixed once already.

Another strategy worth mentioning is called feature branching. A

team might use this when a new feature will take a long time or

cause some instability in the code base. Instead of developing the

feature on the trunk, the team can create a branch specifically

for the feature. The rest of development continues on the trunk as

normal. The feature branch should be updated with trunk changes

frequently—usually daily—to keep the feature branch “close” to the

trunk. This merge from the trunk to the feature branch is known as

rebasing. Once the feature is finished, merge the feature branch

back to the trunk.

trunk

create
branch

daily
 merge

trunk features
develop

implement
feature

merge to
trunk

When a customer calls up with a problem, it’s important to know

exactly what code they are running so you can diagnose and fix

the problem. You should only ship software to a customer from a

release branch, but since the code on the branch can change over

time, you need a better way to uniquely identify a release. With

Subversion, you can tag the code that was used to build a release,

giving it a number such as 2.0.3. To create a tag, you will copy your

release branch into a named directory within the repository tags

directory. Usually the tag name is also compiled into the software

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pg_svn

BRANCHING, MERGING, AND TAGGING 78

as a version number. Once you know what version your customer is

running, you can check out the tagged code and get exactly the

code that is running in production.

The following diagram shows a release branch with two tags, R-1.0.0

and R-1.0.1:

release branch

trunk

fix bugs

create tags

R-1.0.0 R-1.0.1

Covered in this part:

• Task 24, Creating a Branch, on page 80 shows how to create

a release branch.

• If you have a trunk working copy and want to quickly switch

to a branch, follow the instructions in Task 25, Switching to a

Branch, on page 82.

• Task 26, Merging Changes from Trunk to Branch, on page 84

covers the process for merging changes, such as bug fixes, to

a branch.

• Repeated merging, usually used to keep the trunk and a

branch in sync, is discussed in Task 27, Using Change Tracking,

on page 86.

• Tagging is explained in detail in Task 28, Tagging a Release, on

page 88.

Let’s start by creating a release branch.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pg_svn

CREATING A BRANCH 80

24 Creating a Branch

Subversion branches are copies of the trunk and are stored in the branches

directory inside the repository. The branches directory sits alongside the

trunk directory, as we saw in Task 5, Creating an Empty Project, on page 26.

This directory organization is a Subversion convention—nothing forces you

to organize your repository in this way, but if you stick to the convention, it

makes it easier for people to work with your project.

To create a branch, use the Subversion copy command to copy the trunk to a

new location. You should always use repository URLs when creating a

branch. You can copy the file revisions in a working copy to create a branch,

but using a repository URL is much faster. It’s also safer because if your

working copy contains mixed revisions (not all the files in a working copy

have to be at the same revision), Subversion will faithfully copy the mixed

revisions to the branch, which usually isn’t what you want to do.

Branches can be named using any characters that Subversion allows in a

directory name, including spaces and characters with accents (although we

suggest sticking to alphanumerics). Use a naming scheme that makes it easy

to identify branches. Here we’re using “RB” to indicate a release branch,

followed by the version number of the branch. You could also organize your

branches into different directories, such as releases/1.0.

Once you have created your branch, you can check out a working copy of

the code. Make sure that you use a working copy directory name that makes

it easy to identify the branch. In our example, we already have an mbench

directory for the trunk working copy, so we check out into an mbench-1.0

directory for the 1.0 release branch.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pg_svn

CREATING A BRANCH 81

Create a release branch.

prompt> svn copy -m "Create 1.0 release branch" \

http://svn.mycompany.com/mbench/trunk \

http://svn.mycompany.com/mbench/branches/RB_1.0

Check out the branch to a new working copy.

prompt> cd ~/work

prompt> svn checkout \

http://svn.mycompany.com/mbench/branches/RB_1.0 \

mbench-1.0

Create a branch using Tortoise.

Using Windows Explorer, right-click the base directory for your working

copy, and choose TortoiseSVN > Branch/tag....

Edit the To URL setting, replacing trunk with branches/RB_1.0, and click

OK.

Enter a log message, and click OK to create the branch.

Create a branch using Cornerstone.

Select your repository from the repository source list, and then navigate to

the trunk directory for your project.

Drag the trunk directory to the branches directory while holding down the

Option key. Your mouse pointer will indicate you are about to make a copy

with a green + icon.

Give the branch a name, click Copy, and then enter a log message. Click

Continue to create the branch.

Related Tasks

• Task 7, Checking Out a Working Copy, on page 34

• Task 25, Switching to a Branch, on the following page

• Task 26, Merging Changes from Trunk to Branch, on page 84

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/pg_svn

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles continue

the well-known Pragmatic Programmer style and continue to garner awards and rave reviews. As

development gets more and more difficult, the Pragmatic Programmers will be there with more

titles and products to help you stay on top of your game.

Visit Us Online
Pragmatic Guide to Subversion

http://pragprog.com/titles/pg_svn

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact with our

wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available for

purchase at our store: pragprog.com/titles/pg_svn.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/pg_svn
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/pg_svn
www.pragprog.com/catalog

