
Extracted from:

Programming Phoenix
Productive |> Reliable |> Fast

This PDF file contains pages extracted from Programming Phoenix, published by
the Pragmatic Bookshelf. For more information or to purchase a paperback or

PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2016 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

http://www.pragprog.com

Programming Phoenix
Productive |> Reliable |> Fast

Chris McCord
Bruce Tate

and José Valim

The Pragmatic Bookshelf
Dallas, Texas • Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team create
better software and have more fun. For more information, as well as the latest Pragmatic
titles, please visit us at https://pragprog.com.

The team that produced this book includes:

Jacquelyn Carter (editor)
Potomac Indexing, LLC (index)
Eileen Cohen (copyedit)
Gilson Graphics (layout)
Janet Furlow (producer)

For customer support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2016 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-145-2
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—April 2016

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 1

Introducing Phoenix
In the first few paragraphs to open this book, you probably expect us to tell
you that Phoenix is radically different—newer and better than anything that’s
come before. We know that Phoenix is a bold name for a bold framework, but
look. By now, you’ve likely seen enough web frameworks to know most of our
ideas aren’t new. It’s the combination of so many of the best ideas from so
many other places that has so many people excited.

You’ll find metaprogramming capabilities that remind you of Lisp and domain-
specific languages (DSLs) that remind you at times of Ruby. Our method of
composing services with a series of functional transformations is reminiscent
of Clojure’s Ring. We achieved such throughput and reliability by climbing
onto the shoulders of Erlang and even native Cowboy. Similarly, some of the
groundbreaking features like channels and reactive-friendly APIs combine
the best features of some of the best JavaScript frameworks you’ll find else-
where. The precise cocktail of features seems to fit, where each feature mul-
tiplies the impact of the next.

We spent time on the right base abstractions for simplicity, and later we
noticed that things weren’t just fast, but among the fastest in the industry.
When we pushed on performance and concurrency, we got functions that
composed better and were simpler to manage. When our focus was on the
right abstractions, we got better community participation. We now find our-
selves in a firestorm of improvement. Phoenix just feels right.

After using and writing about frameworks spanning a half a dozen languages
across a couple of decades, we think the precise bundle of goodness that we’ll
share is powerful enough for the most serious problems you throw at it,
beautiful enough to be maintainable for years to come, and—most impor-
tant—fun to code. Give us a couple of pages and you’ll find that the framework
represents a great philosophy, one that leverages the reliability and grace of

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/phoenix
http://forums.pragprog.com/forums/phoenix

Elixir. You’ll have a front-row seat to understand how we made the decisions
that define Phoenix and how best to use them to your advantage.

Simply put, Phoenix is about fast, concurrent, beautiful, interactive, and
reliable applications. Let’s break each of these claims down.

Fast
Let’s cut to the chase. Elixir is both fast and concurrent, as you’d expect from
a language running on the Erlang virtual machine. If you’re looking for raw
speed, Phoenix is hard to beat. In July 2015, we (Chris McCord) compared
Phoenix with Ruby on Rails. The firebird was nearly an order of magnitude
faster than the locomotive, and it used just over one fourth of the processing
power and just under one sixth of the total memory. Those numbers are
staggering, but not many Rails users are after naked power.

Let’s compare Phoenix with some other popular frameworks. Check out the
measurements of some major web frameworks at the Phoenix/mroth show-
down.1 Those results are impressive, rivaling the best in the industry. Among
these servers are some of the fastest available. As these numbers rolled in,
the core team got increasingly excited. Little did we know that the story was
only beginning.

We kept noticing that as you add cores, the story gets even better. Another
run of this benchmark on the most powerful machines at Rackspace2 tells
an even more compelling story. Check the link for details, but you can see
the bare bones here:

Consistency (σ ms)Latency (ms)Throughput (req/s)Framework

2.220.63198328.21Plug

1.040.61179685.94Phoenix 0.13.1

0.570.65176156.41Gin

14.171.89171236.03Play

0.300.59169030.24Phoenix 0.9.0

1.071.2492064.94Express Cluster

2.523.3532077.24Martini

2.533.5030561.95Sinatra

4.078.5011903.48Rails

1. https://github.com/mroth/phoenix-showdown/blob/master/README.md
2. https://gist.github.com/omnibs/e5e72b31e6bd25caf39a

Chapter 1. Introducing Phoenix • 2

• Click HERE to purchase this book now. discuss

https://github.com/mroth/phoenix-showdown/blob/master/README.md
https://gist.github.com/omnibs/e5e72b31e6bd25caf39a
http://pragprog.com/titles/phoenix
http://forums.pragprog.com/forums/phoenix

Throughput is the total number of transactions, latency is the total waiting
time between transactions, and consistency is a statistical measurement of
the consistency of the response. Phoenix is the fastest framework in the
benchmark and among the most consistent. The slowest request won’t be
that much slower than the fastest. The reason is that Elixir’s lightweight
concurrency removes the need for stop-the-world garbage collectors. You can
see results for Plug, the Elixir library that serves as a foundation for Phoenix,
as well as results for two different versions of Phoenix. You can see that over
time, Phoenix performance is getting better, and the performance is in the
same ballpark with the lower-level Plug.

You’ll see several reasons for this blindingly fast performance:

• Erlang has a great model for concurrency. Facebook bought WhatsApp
for $21 billion. That application achieved two million concurrently running
connections on a single node.

• The router compiles down to the cat-quick pattern matching. You won’t
have to spend days on performance tuning before you even leave the
routing layer.

• Templates are precompiled. Phoenix doesn’t need to copy strings for each
rendered template. At the hardware level, you’ll see caching come into
play for these strings where it never did before.

• Functional languages do better on the web. Throughout this book, you’ll
learn why.

Performance with Phoenix isn’t an afterthought. Nor will you have to trade
beautiful, maintainable code to get it.

Concurrent
If you’re using an object-oriented web framework, chances are that you’re
watching the evolution of multicore architectures anxiously. You probably
already know that the existing imperative models won’t scale to handle the
types of concurrency we’ll need to run on hardware with thousands of cores.
The problem is that languages like Java and C# place the burden of managing
concurrency squarely on the shoulders of the programmer. Languages like
PHP and Ruby make threading difficult to the point where many developers
try to support only one web connection per operating-system process, or some
structure that is marginally better. In fact, many people that come to Phoenix
find us precisely because concurrency is so easy.

• Click HERE to purchase this book now. discuss

Concurrent • 3

http://pragprog.com/titles/phoenix
http://forums.pragprog.com/forums/phoenix

Consider PhoenixDelayedJob or ElixirResque—complex packages that exist only to
spin off reliable processes as a separate web task. You don’t need one. Don’t
get us wrong. In Ruby, such packages are well conceived and a critical part
of any well-crafted solution. In Elixir, those frameworks turn into primitives.
The Elixir programming model makes reasoning about concurrent systems
almost as easy as reasoning about single-threaded ones. When you have two
database fetches, you won’t have to artificially batch them together with a
stored procedure or a complex query. You can let them work at the same time:

company_task = Task.async(fn -> find_company(cid) end)
user_task = Task.async(fn -> find_user(uid) end)
cart_task = Task.async(fn -> find_cart(cart_id) end)

company = Task.await(company_task)
user = Task.await(user_task)
cart = Task.await(cart_task)

...

You don’t have to wait for the combined time for three database requests.
Your code will take as long as the single longest database request. You’ll be
able to use more of your database’s available power, and other types of
work—like web requests or long exports—will complete much more quickly.

In aggregate, your code will spend less time waiting and more time working.

Here’s the kicker. This code is more reliable. Elixir is based on the libraries
that form the backbone of the most reliable systems in the world. You can
start concurrent tasks and services that are fully supervised. When one
crashes, Elixir can restart it in the last known good state, along with any
tainted related service.

Reliability and performance don’t need to be mutually exclusive.

Beautiful Code
Elixir is perhaps the first functional language to support Lisp-style macros
with a more natural syntax. This feature, like a template for code, is not always
the right tool for everyday users, but macros are invaluable for extending the
Elixir language to add the common features all web servers need to support.

For example, web servers need to map routes onto functions that do the job:

pipeline :browser do
plug :accepts, ["html"]
plug :fetch_session
plug :protect_from_forgery

end

Chapter 1. Introducing Phoenix • 4

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/phoenix
http://forums.pragprog.com/forums/phoenix

pipeline :api do
plug :accepts, ["json"]

end

scope "/", MyApp do
pipe_through :browser
get "/users", UserController, :index
...

end

scope "/api/", MyApp do
pipe_through :api
...

end

You’ll see this code a little later. You don’t have to understand exactly what
it does. For now, know that the first group of functions will run for all
browser-based applications, and the second group of functions will run for
all JSON-based applications. The third and fourth blocks define which URLs
will go to which controller.

You’ve likely seen code like this before. Here’s the point. You don’t have to
sacrifice beautiful code to use a functional language. Your code organization
can be even better. In Phoenix, you won’t have to read through dozens of
skip_before_filter commands to know how your code works. You’ll just build a
pipeline for each group of routes that work the same way.

You can find an embarrassing number of frameworks that break this kind of
code down into something that is horribly inefficient. Consultancies have
made millions on performance tuning by doing nothing more than tuning
route tables. This Phoenix example reduces your router to pattern matching
that’s further optimized by the virtual machine, becoming extremely fast.
We’ve built a layer that ties together Elixir’s pattern matching with the macro
syntax to provide an excellent routing layer, and one that fits the Phoenix
framework well.

You’ll find many more examples like this one, such as Ecto’s elegant query
syntax or how we express controllers as a pipeline of functions that compose
well and run quickly. In each case, you’re left with code that’s easier to read,
write, and understand.

We’re not here to tell you that macros are the solution to all problems, or that
you should use a DSL when a function call should do. We’ll use macros when
they can dramatically simplify your daily tasks, making them easier to
understand and produce. When we do build a DSL, you can bet that we’ve
done our best to make it fast and intelligent.

• Click HERE to purchase this book now. discuss

Beautiful Code • 5

http://pragprog.com/titles/phoenix
http://forums.pragprog.com/forums/phoenix

Simple Abstractions
One continuous problem with web frameworks is that they tend to bloat over
time, sometimes fatally. If the underlying abstractions for extending the
framework are wrong, each new feature will increase complexity until the
framework collapses under its own weight. Sometimes, the problem is that
the web framework doesn’t include enough, and the abstractions for extending
the framework aren’t right.

This problem is particularly acute with object-oriented languages. Inheritance
is simply not a rich enough abstraction to represent the entire ecosystem of
a web platform. Inheritance works best when a single feature extends a
framework across a single dimension. Unfortunately, many ambitious features
span several different dimensions.

Think about authentication, a feature that will impact every layer in your
system. Database models must be aware, because authentication schemes
require a set of fields to be present, and passwords must be hashed before
being saved. Controllers are not immune, because signed-in users must be
treated differently from those who are not. View layers, too, must be aware,
because the contents of a user interface can change based on whether a user
is signed in. Each of those areas must then be customized by the programmer.

Effortlessly Extensible
The Phoenix framework gives you the right set of abstractions for extension.
Your applications will break down into individual functions. Rather than rely
on other mechanisms like inheritance that hide intentions, you’ll roll up your
functions into explicit lists called pipelines, where each function feeds into
the next. It’s like building a shopping list for your requests.

In this book, you’ll write your own authentication code, based on secure open
standards. You’ll see how easy it is to tune behavior to your needs and extend
it when you need to.

The Phoenix abstractions, in their current incarnation, are new, but each has
withstood the test of time. When it’s time to extend Phoenix—whether you’re
plugging in your own session store or doing something as comprehensive as
attaching third-party applications like a Twitter wrapper—you’ll have the
right abstractions available to ensure that the ideas can scale as well as they
did when you wrote the first line of code.

Chapter 1. Introducing Phoenix • 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/phoenix
http://forums.pragprog.com/forums/phoenix

Interactive
Chris started the Phoenix project after working to build real-time events into
his Ruby on Rails applications. As he started to implement the solution, he
had a threading API called Event Machine and noticed that his threads would
occasionally die. He then found himself implementing code to detect dead
threads.

Over time, the whole architecture began to frustrate him. He was convinced
that he could make it work, but he didn’t think he could ever make it beautiful
or reliable.

If you’re building interactive applications on a traditional web stack, you’re
probably working harder than you need to. There’s a reason for that. In the
years before web programming was popular, client-server applications were
simple. A client process or two communicated to its own process on the
server. Programmers had a difficult time making applications scale. Each
application connection required its own resources: an operating-system pro-
cess, a network connection, a database connection, and its own memory.
Hardware didn’t have enough resources to do that work efficiently, and lan-
guages couldn’t support many processes, so scalability was limited.

Scaling by Forgetting
Traditional web servers solve the scalability problem by treating each tiny
piece of a user interaction as an identical request. The application doesn’t
save state at all. It simply looks up the user and simultaneously looks up the
context of the conversation in a user session. Presto. All scalability problems
go away because there’s only one type of connection.

But there’s a cost. The developer must keep track of the state for each request,
and that burden can be particularly arduous for newer, more interactive
applications with intimate, long-running rich interactions. As a developer,
until now, you’ve been forced to make a choice between applications that
intentionally forget important details to scale and applications that try to
remember too much and break under load.

Processes and Channels
With Elixir, you can have both performance and productivity, because it
supports a feature called lightweight processes. In this book, when you read
the word process, you should think about Elixir lightweight processes rather
than operating-system processes. You can create hundreds of thousands of
processes without breaking a sweat. Lightweight processes also mean

• Click HERE to purchase this book now. discuss

Interactive • 7

http://pragprog.com/titles/phoenix
http://forums.pragprog.com/forums/phoenix

lightweight connections, and that matters because connections can be conver-
sations. Whether you’re building a chat on a game channel or a map to the
grocery store, you won’t have to juggle the details by hand anymore. This
application style is called channels, and Phoenix makes it easy. Here’s what
a typical channels feature might look like:

def handle_in("new_annotation", params, socket) do
broadcast! socket, "new_annotation", %{

user: %{username: "anon"},
body: params["body"],
at: params["at"]

}

{:reply, :ok, socket}
end

You don’t have to understand the details. Just understand that when your
application doesn’t need to juggle the past details of a conversation, your code
can get much simpler and faster.

Even now, you’ll see many different types of frameworks begin to support
channel-style features, from Java to JavaScript and even Ruby. Here’s the
problem. None of them comes with the simple guarantees that Phoenix has:
isolation and concurrency. Isolation guarantees that if a bug affects one
channel, all other channels continue running. Breaking one feature won’t
bleed into other site functionality. Concurrency means one channel can never
block another one, whether code is waiting on the database or crunching
data. This key advantage means that the UI never becomes unresponsive
because the user started a heavy action. Without those guarantees, the
development bogs down into a quagmire of low-level concurrency details.

Building applications without these guarantees is usually possible but never
pleasant. The results will almost universally be infected with reliability and
scalability problems, and your users will never be as satisfied as you’d like
to make them.

Reliable
As Chris followed José into the Elixir community, he learned to appreciate
the frameworks that Erlang programmers have used to make the most reliable
applications in the world. Before Elixir, the language of linked and monitored
processes wasn’t part of his vocabulary. After spending some time with Elixir,
he found the missing pieces he’d been seeking.

You see, you might have beautiful, concurrent, responsive code, but it doesn’t
matter unless your code is reliable. Erlang applications have always been

Chapter 1. Introducing Phoenix • 8

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/phoenix
http://forums.pragprog.com/forums/phoenix

more reliable than others in the industry. The secret is the process linking
structure and the process communication, which allow effective supervision.
Erlang’s supervisors can have supervisors too, so that your whole application
will have a tree of supervisors.

Here’s the kicker. By default, Phoenix has set up most of the supervision
structure for you. For example, if you want to talk to the database, you need
to keep a pool of database connections, and Phoenix provides one out of the
box. As you’ll see later on, we can monitor and introspect this pool. It’s
straightforward to study bottlenecks and even emulate failures by crashing
a database connections on purpose, only to see supervisors establishing new
connections in their place. As a programmer, these abstractions will give you
the freedom of a carpenter building on a fresh clean slab, but your foundation
solves many of your hardest problems before you even start. As an administra-
tor, you’ll thank us every day of the week because of the support calls that
don’t come in.

Now that we’ve shown you some of the advantages of Phoenix, let’s decide
whether this book is right for you.

Is This Book for You?
If you’ve followed Phoenix for any period of time, you already know that this
book is the definitive resource for Phoenix programming. If you’re using
Phoenix or are seriously considering doing professional Elixir development,
you’re going to want this book. It’s packed with insights from the team that
created it. Find just one tip in these pages, and the book will pay for itself
many times over. This section seeks to answer a different question, though.
Beyond folks who’ve already decided to make an investment in Phoenix, who
should buy this book?

Programmers Embracing the Functional Paradigm
Every twenty years or so, new programming paradigms emerge. The industry
is currently in the midst of a shift from object-oriented programming to
functional programming. If you’ve noticed this trend, you know that a half
dozen or so functional languages are competing for mindshare. The best way
to understand a programming language is to go beyond basic online tutorials
to see how to approach nontrivial programs.

With Programming Phoenix, we don’t shy away from difficult problems such
as customizing authentication, designing for scale, or interactive web pages.
As you explore the language, you’ll learn how the pieces fit together to solve

• Click HERE to purchase this book now. discuss

Is This Book for You? • 9

http://pragprog.com/titles/phoenix
http://forums.pragprog.com/forums/phoenix

difficult problems and how functional programming helps us do it elegantly.
When you’re done, you might not choose Phoenix, but you’ll at least under-
stand the critical pieces that make it popular and if those pieces are likely to
work for you.

Rails Developers Seeking Solutions
If you follow the Rails community closely, you know that it has experienced
some attrition. Bear in mind that this team believes that Ruby on Rails was
great for our industry. Rails still solves some problems well, and for those
problems it can be a productive solution. The problem for Rails developers is
that the scope of problems it’s best able to solve is rapidly narrowing.

In fact, the early growth of Elixir is partially fueled by Rails developers like
you. The similar syntax provided an attractive base for learning the language,
but the radically improved programming paradigms, introspectable runtime,
and concurrency models all provide the solid foundation that those who push
Rails the hardest find lacking.

Phoenix measures response times in microseconds, and it has been shown
to handle millions of concurrent WebSocket connections on a single machine
without sacrificing the productivity we’ve come to appreciate.

If you’re pushing Rails to be more scalable or more interactive, you’re not
alone. You’re going to find Phoenix powerful and interesting.

Dynamic Programmers Looking for a Mature Environment
Like the authors of this book, you may be a fan of dynamic languages like
Ruby, Python, and JavaScript. You may have used them in production or
even contributed to those ecosystems. Many developers like us are looking
for similar flexibility but with a more robust runtime experience. We may love
the programming experience in those languages, but we often find ourselves
worn out by the many compromises we have to make for performance, con-
currency, and maintainability. Phoenix resonates with us because many of
the creators of this ecosystem built it to solve these problems.

Elixir is a modern dynamic language built on the three-decades-old, battle-
tested Erlang runtime. Elixir macros bring a lot of the flexibility that Ruby,
Python, and JavaScript developers came to love, but those dynamic features
are quarantined to compile time. With Elixir, during runtime, you have a
consistent system with great type support that’s generally unseen in other
dynamic languages.

Chapter 1. Introducing Phoenix • 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/phoenix
http://forums.pragprog.com/forums/phoenix

Mix these features with the concurrency power, and you’ll see why Phoenix
provides such excellent performance for everything on the web, and beyond.

Java Developers Seeking More
When Java emerged twenty years ago, it had everything a frustrated C++
community was missing. It was object-oriented, secure, ready for the Internet,
and simple, especially when compared to the C++ alternatives at the time. As
the Java community flourished and consolidated, the tools and support came.
Just about everyone supported Java, and that ubiquity led to a language
dominance that we’d never seen before.

As Java has aged, it’s lost some of that luster. As the committees that shaped
Java compromised, Java lost some of the edge and leadership that the small
leadership team provided in early versions. Backward compatibility means
that the language evolves slowly as new solutions emerge. All of that early
ubiquity has led to a fragmented and bloated ecosystem that moves too
slowly and takes years to master, but delivers a fraction of the punch of
emerging languages. The Java concurrency story places too much of a burden
on the developer, leaving libraries that may or may not be safe for production
systems.

New languages are emerging on the JVM, and some of those are rich in terms
of features and programming models. This team respects those languages
tremendously, but we didn’t find the same connection there that we found
elsewhere. We also had a hard time separating the good from the bad in the
Java ecosystem.

If you’re a Java developer looking for where to go next, or a JVM-language
developer looking for a better concurrency story, Phoenix would mean leaving
the JVM behind. Maybe that’s a good thing. You’ll find a unified, integrated
story in Phoenix with sound abstractions on top. You’ll see a syntax that
provides Clojure-style metaprogramming on syntax that we think is richer
and cleaner than Scala’s. You’ll find an existing ecosystem from the Erlang
community that has a wide range of preexisting libraries, but ones built from
the ground up to support not only concurrency, but also distributed software.

Erlang Developers Doing Integrated Web Development
Curiously, we’re not seeing a heavy proliferation of Erlang developers in the
Elixir community so far. We expect that to change. The toolchain for Phoenix
is spectacular, and many of the tools that exist for Erlang can work in this
ecosystem as well. If you’re an Erlang developer, you may want to take
advantage of Mix’s excellent scripting for the development, build, and testing

• Click HERE to purchase this book now. discuss

Is This Book for You? • 11

http://pragprog.com/titles/phoenix
http://forums.pragprog.com/forums/phoenix

workflow. You may like the package management in Hex, or the neat compo-
sition of concerns in the Plug library. You may want to use macros to extend
the language for your business, or test with greater leverage. You’ll have new
programming features like protocols or structs.

If you do decide to embrace Elixir, that doesn’t mean you need to leave Erlang
behind. You’ll still be able to use the Erlang libraries you enjoy today,
including the Erlang process model and full OTP integration. You’ll be able
to access your OTP GenServers directly from the Elixir environment, and
directly call libraries without the need for extra complex syntax. If these terms
aren’t familiar to you, don’t worry. We’ll explore each of them over the course
of the book.

Heat Seekers
If you need raw power supported by a rich language, we have a solution and
the numbers to back it up. You’ll have to work for it, but you’ll get much
better speed and reliability when you’re done. We’ve run a single chat room
on one box supporting two million users. That means that each new message
had to go out two million times. We’ve run benchmarks among the best in
the industry, and our numbers seem to be improving as more cores are added.
If you need speed, we have the tonic for what ails you.

Others
Certainly, this book isn’t for everyone. We do think that if you’re in one of
these groups, you’ll find something you like here. We’re equally confident that
folks that we haven’t described will pick up this book and find something
valuable. If you’re one of those types, let us know your story.

Online Resources
The apps and examples shown in this book can be found at the Pragmatic
Programmers website for this book.3 You’ll also find the community forum
and the errata-submission form, where you can report problems with the text
or make suggestions for future versions.

In the next chapter, you’ll dive right in. From the beginning, you’ll build a
quick application, and we’ll walk you through each layer of Phoenix. The
water is fine. Come on in!

3. http://pragprog.com/book/phoenix/programming-phoenix

Chapter 1. Introducing Phoenix • 12

• Click HERE to purchase this book now. discuss

http://pragprog.com/book/phoenix/programming-phoenix
http://pragprog.com/titles/phoenix
http://forums.pragprog.com/forums/phoenix

