
Extracted from:

Functional Programming:
A PragPub Anthology

Exploring Clojure, Elixir, Haskell, Scala, and Swift

This PDF file contains pages extracted from Functional Programming: A PragPub
Anthology, published by the Pragmatic Bookshelf. For more information or to

purchase a paperback or PDF copy, please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This
is available only in online versions of the books. The printed versions are black
and white. Pagination might vary between the online and printed versions; the

content is otherwise identical.

Copyright © 2017 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,

without the prior consent of the publisher.

The Pragmatic Bookshelf
Raleigh, North Carolina

http://www.pragprog.com

Functional Programming:
A PragPub Anthology

Exploring Clojure, Elixir, Haskell, Scala, and Swift

Michael Swaine
and the PragPub writers

The Pragmatic Bookshelf
Raleigh, North Carolina

Many of the designations used by manufacturers and sellers to distinguish their products
are claimed as trademarks. Where those designations appear in this book, and The Pragmatic
Programmers, LLC was aware of a trademark claim, the designations have been printed in
initial capital letters or in all capitals. The Pragmatic Starter Kit, The Pragmatic Programmer,
Pragmatic Programming, Pragmatic Bookshelf, PragProg and the linking g device are trade-
marks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher assumes
no responsibility for errors or omissions, or for damages that may result from the use of
information (including program listings) contained herein.

Our Pragmatic books, screencasts, and audio books can help you and your team create
better software and have more fun. Visit us at https://pragprog.com.

The team that produced this book includes:

Publisher: Andy Hunt
VP of Operations: Janet Furlow
Executive Editor: Susannah Davidson Pfalzer
Indexing: Potomac Indexing, LLC
Copy Editor: Nicole Abramowitz
Layout: Gilson Graphics

For sales, volume licensing, and support, please contact support@pragprog.com.

For international rights, please contact rights@pragprog.com.

Copyright © 2017 The Pragmatic Programmers, LLC.
All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted,
in any form, or by any means, electronic, mechanical, photocopying, recording, or otherwise,
without the prior consent of the publisher.

Printed in the United States of America.
ISBN-13: 978-1-68050-233-6
Encoded using the finest acid-free high-entropy binary digits.
Book version: P1.0—July 2017

https://pragprog.com
support@pragprog.com
rights@pragprog.com

CHAPTER 11

Getting Functional with Elixir
by Dave Thomas

In the preceding chapter, we looked at the basics of pattern matching and
saw how it is universal in Elixir—it’s the only way to bind a value to a variable
or parameter. That may have seemed like an unusual way to start talking
about functional programming, but it’s very natural for Elixir. And pattern
matching really shines when we apply it to functions, which we’ll explore in
depth in this chapter.

Anonymous Functions
Elixir has a nice set of built-in modules. One of these, Enum, lets you work on
enumerable collections. One of its most commonly used functions is map,
which applies a function to a collection, producing a new collection. Let’s fire
up the Elixir interactive shell, iex, and try it.

iex> Enum.map [2,4,6], fn val -> val * val end
[4,16,36]

The first argument we pass to map is the collection: in this case, a list of three
integers. The second argument is an anonymous function.

Anonymous functions (I’m going to call them fns from now on) are defined
between the keywords fn and end. A right-facing arrow, ->, separates a list of
zero or more parameters on the left from the body of the function on the right.

We passed map the function fn val -> val*val end. This fn takes a single parameter,
val, and the body of the function multiplies that value by itself, implicitly
returning the result.

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ppanth
http://forums.pragprog.com/forums/ppanth

A fn is just another Elixir value, so we also have written this code as:

iex> square = fn val -> val * val end
#Function<erl_eval.6.17052888>
iex> Enum.map [2,4,6], square
[4,16,36]

You can call fns using something like a regular function call:

iex> square.(5)
25

The period and the parentheses are required.

Boy, that’s way too much typing, you say.

No it’s not, and we don’t reward whining around these parts anyway.

That said, Elixir does have a shortcut.

iex> Enum.map [2,4,6], &(&1 * &1)
[4,16,36]

When Elixir sees a unary &, it knows that it needs to generate an anonymous
function. The function will have from 1 to n parameters, denoted in the expres-
sion that follows as &1 to &n. So, &(&1*&1) is logically the same as fn p1 -> p1*p1 end,
and &rem(&1,&2) becomes fn p1,p2 -> rem(p1,p2) end.

Because fns are just values, you can even write the code as:

iex> square = & &1 * &1
#Function<erl_eval.6.17052888>
iex> Enum.map [2,4,6], square
[4,16,36]

This is a fantastically useful shortcut, but there is a gotcha. When deciding
what code to make the body of the fn, Elixir starts at the ampersand term
and looks up the parse tree for the immediately enclosing expression. With
&(&1*&1), it’s the multiplication operator. With &rem(&1,&2), it’s the function
call to rem.

Named Functions
Anonymous functions tend to be used for callback work—they are typically
short and localized in their use. Named functions, however, are where the
real work gets done.

Chapter 11. Getting Functional with Elixir • 6

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ppanth
http://forums.pragprog.com/forums/ppanth

Named functions can only exist inside Elixir modules. Here’s an example:

elixir/ascii.exs
defmodule AsciiDigit do

def valid?(character) do
character in ?0..?9

end
end

IO.inspect AsciiDigit.valid? ?4 # => true
IO.inspect AsciiDigit.valid? ?a # => false

To follow this code, you first have to know that the syntax ?x returns the
integer character code for x (so ?0 is 48).

Our example defines a module called AsciiDigit containing a single function,
valid?. This takes a character code and returns true if it is a digit from 0 to 9.
We use the range operator .. to define the first and last valid character, and
the in operator to check for inclusion.

As we saw in Patterns and Transformations in Elixir, Elixir supports pattern
matching when determining which function to run. You can use def multiple
times for the same function, each with a different pattern of parameters. Elixir
will dynamically choose one where the parameters match the arguments passed.

Let’s take another look at our Fibonacci function.

elixir/fib.exs
defmodule Fibonacci do

def fib(0), do: 1
def fib(1), do: 1
def fib(n), do: fib(n-2)+fib(n-1)

end

Enum.map 0..10, &Fibonacci.fib(&1) #=> [1,1,2,3,5,8,13,21,34,55,89]

Despite appearances, there’s just one definition of the fib function in there. It
just has three heads—three patterns of arguments that select different bodies.

The first two heads select the cases where the argument is 0 or 1. They use
the abbreviated form of the body, do: expr to return 1. The third form is the
recursive step. If neither of the first two match, the third one executes.

What happens if we pass our function a negative argument? Right now, it
will loop until we run out of stack or patience—subtracting 1 or 2 from a
negative number will never reach 0. Fortunately, Elixir has guard clauses,
which allow us to put additional constraints on pattern matching.

• Click HERE to purchase this book now. discuss

Named Functions • 7

http://media.pragprog.com/titles/ppanth/code/elixir/ascii.exs
http://media.pragprog.com/titles/ppanth/code/elixir/fib.exs
http://pragprog.com/titles/ppanth
http://forums.pragprog.com/forums/ppanth

elixir/fib1.exs
defmodule Fibonacci do

def fib(0), do: 1
def fib(1), do: 1
def fib(n) when n > 1, do: fib(n-2)+fib(n-1)

end

Fibonacci.fib(10) #=> 89
Fibonacci.fib(-10)
=> ** (FunctionClauseError) no function clause matching in Fibonacci.fib/1

Now, when we call fib with a negative number, Elixir can’t find a function
clause that matches, so it raises an exception. If you really wanted to, you
could handle this case in code, giving a more application-specific error:

elixir/fib2.exs
defmodule Fibonacci do

def fib(0), do: 1
def fib(1), do: 1
def fib(n) when is_integer(n) and n > 1, do: fib(n-2)+fib(n-1)
def fib(x), do: raise "Can't find fib(#{x})"

end

Fibonacci.fib(10) #=> 89
Fibonacci.fib(-10) #=> ** (RuntimeError) Can't find fib(-10)
Fibonacci.fib("cat") #=> ** (RuntimeError) Can't find fib(cat)

We extended our guard clause to check that the parameter is an integer, and
then added a fourth function head that accepts any parameter and reports
an appropriate error.

But understanding how Elixir does functions isn’t the same as understanding
how to do functional programming in Elixir. As we are about to see.

A Practical Example
Most of the long number strings we deal with every day (credit card numbers,
IMEI numbers in your phone, and so on) have a check digit. This is normally
the final digit of the number, and it is calculated using some algorithm that
combines all the previous digits. So, when you enter your credit card number,
the web page can recalculate the check digit, and verify that it is the same
as the last digit in the number you gave. It isn’t a check against fraud; it’s
simply a quick way of picking up typos.

Chapter 11. Getting Functional with Elixir • 8

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/ppanth/code/elixir/fib1.exs
http://media.pragprog.com/titles/ppanth/code/elixir/fib2.exs
http://pragprog.com/titles/ppanth
http://forums.pragprog.com/forums/ppanth

Probably the most widely used technique is the Luhn Algorithm.1 It reverses
the digits in the number, and splits them into two sets: digits at odd positions
in the string, and digits at even positions. It sums the odd digits. For the even
digits, it multiplies each by two. If the result is ten or more, it subtracts nine.
It then sums all the results. Adding the sum of odd and even positions will
yield a result that’s divisible by ten for valid numbers.

When I first started with Elixir, my head was still full of conventional ways
of doing things. As a result, I’d write something like the following:

elixir/nf1.ex
defmodule CheckDigit do

import Enum

def valid?(numbers) do
numbers = reverse(numbers)
numbers = map(numbers, fn char -> char - ?0 end)
numbers = with_index(numbers)
{ odds, evens } =

partition(numbers, fn {_digit, index} -> rem(index, 2) == 0 end)
sum_odd = reduce odds, 0, fn {number, _index}, sum -> sum + number end
sum_even = reduce evens, 0, fn {number, _index}, sum ->
result = number * 2
if result >= 10 do

result - 9 + sum
else

result + sum
end

end
rem(sum_odd + sum_even, 10) == 0

end

end

Ugh! Let’s step through it (hopefully you’re wearing boots).

The Enum module has lots of functions for dealing with collections. We’ll be
using many of them in this code, so we import the module. This means we
can write map instead of Enum.map.

Our valid? function is passed a list of UTF-8 digits. By coincidence, that’s
exactly what the single quoted string literal generates.

Using the description of the Luhn algorithm, we reverse the digits, and then
convert the UTF representation to the actual integer value (so ?1, which is
41, gets mapped to 1). At this point, given the argument '123', we’d have a list
of integers [3, 2, 1].

1. http://en.wikipedia.org/wiki/Luhn_algorithm

• Click HERE to purchase this book now. discuss

A Practical Example • 9

http://media.pragprog.com/titles/ppanth/code/elixir/nf1.ex
http://en.wikipedia.org/wiki/Luhn_algorithm
http://pragprog.com/titles/ppanth
http://forums.pragprog.com/forums/ppanth

Now it gets messy. We need to partition the digits into those on an even
position and those at an odd position. To prepare to do that, we use map,
passing it the function fn number, index -> {number, index} end. This function takes
the actual digit value, along with its index in the list, and maps it to a tuple
containing each.

At this point, alarm bells should be ringing. This is just too damn hard. But
we plow on, because that’s what programmers do.

The partition function takes a collection and a function. It returns a tuple where
the first element is a list of values for which the function returned true, and
the second element is the rest of the values.

Now we have to sum the odd values. Whenever you need to reduce a collection
to a single value, you’ll probably want to use the reduce function. It takes the
collection, an initial value, and a function. This function receives each element
of the collection in turn, along with the current value. Whatever the function
returns becomes the next current value. So, summing a list of numbers can
be done with

Enum.reduce list, fn val, sum => val + sum end
or
Enum.reduce list, &(&1 + &2)

But what we have is a list of {value, index} tuples. This means we need to use
pattern matching on the first parameter of the function to extract just the
value. (The underscore in front of _index means we’re ignoring this field.)

Summing the even numbers is similar, but we have to do the doubling, and
the conversion of numbers ten or above.

At the end of all this, we can test this in iex. I’m using a standard Visa test
credit card number here, so don’t go booking a trip to Tahiti using it.

$ iex validate_cc.exs
iex> CheckDigit.valid? '4012888888881881'
true
iex> CheckDigit.valid? '0412888888881881'
false

Refactor to Functional Style
Our solution works, but the style isn’t very functional. (That’s a polite way of
saying it’s butt ugly.) To tidy it up, I look for places where there’s clearly
something wrong, and see if I can fix them.

Chapter 11. Getting Functional with Elixir • 10

• Click HERE to purchase this book now. discuss

http://pragprog.com/titles/ppanth
http://forums.pragprog.com/forums/ppanth

The first problem I see is the first three lines. I’m transforming the given
number into a reversed set of digits, each with an associated index.

The word transform is the clue. Functional programming is all about trans-
forming data. It’s so important that Elixir has a special operator, |>. This lets
us build pipelines of functions, where each transforms the results of the
previous. It lets us compose functionality.

Using the pipeline operator, we can rewrite the first three lines as

numbers
|> reverse
|> map(fn char -> char - ?0 end)
|> map(fn digit, index -> {digit, index} end)

We take the original list and transform it by reversing it, then by converting
character codes to integers, and then by adding the index.

The pipeline operator looks like magic, but it’s actually quite simple. It takes
the value of the expression on its left, and inserts it as the first argument of
the function call on its right, shifting all the other arguments down.

Now the second ugliness is all this partitioning and summing. Our problem
is that we’re thinking imperatively, not functionally. We’re telling Elixir each
step of what to do, when instead we should be thinking of the specification
of what we want and letting Elixir work out the details.

Think back to our Fibonacci example. There we implemented our specification
as three function heads, which matched the two special cases and the one
general case. Can we do the same here?

Rather than processing our list of digits one element at a time, what if we
process it in twos? This means we’re working with a pair of digits—the first
will be the one at an odd position, the second at the even position. We know
how to calculate the Luhn number for these two digits, and then we can add
the result for them into the result for the remainder of the list. That’s our
recursive step.

When we finally empty the list, we will have calculated the required sum, so
we can simply return it.

There’s one other case to consider. If the list has an odd number of digits,
then when we get to the end, we’ll only have a single element. But we know
that element is at an odd position, so we can simply add it to the accumulated
sum and return the result.

• Click HERE to purchase this book now. discuss

Refactor to Functional Style • 11

http://pragprog.com/titles/ppanth
http://forums.pragprog.com/forums/ppanth

So, here’s the new version of our code:

elixir/nfx.ex
defmodule CheckDigit do

import Enum, only: [reverse: 1, map: 2]

@doc """
Determine if a sequence of digits is valid, assuming the last digit is
a Luhn checksum. (http://en.wikipedia.org/wiki/Luhn_algorithm)
"""

def valid?(numbers) when is_list(numbers) do
numbers
|> reverse
|> map(&(&1 - ?0))
|> sum
|> rem(10) == 0

end

defp sum(digits), do: _sum(digits, 0)

defp _sum([], sum), do: sum
defp _sum([odd], sum), do: sum + odd
defp _sum([odd, even | tail], sum) when even < 5 do

_sum(tail, sum + odd + even*2)
end
defp _sum([odd, even | tail], sum) do

_sum(tail, sum + odd + even*2 - 9)
end

end

The pipeline at the top is now a lot simpler—there’s no messing with indexes
and no temporary variables. It reads like a code version of the spec.

The sum function is an example of a common pattern. We need to set the initial
value of the thing we’re summing, but we don’t want the code that calls us
to know about that detail, so we write a version of sum that just takes the
numbers and then calls the actual implementation, passing in the list and a
zero for the initial value. We could give the helper functions the same name,
but I prefer using _sum to differentiate them. (Many Elixir programmers would
have called them do_sum, but that always strikes me as too imperative.)

The _sum function has four heads:

• If the list is empty, we return the sum that we’ve been accumulating in
the second parameter.

• If the list has one element, add its value to the sum so far and return it.
This is the terminating condition for a list with an odd number of elements.

Chapter 11. Getting Functional with Elixir • 12

• Click HERE to purchase this book now. discuss

http://media.pragprog.com/titles/ppanth/code/elixir/nfx.ex
http://pragprog.com/titles/ppanth
http://forums.pragprog.com/forums/ppanth

• Otherwise, we extract the first two elements from the list. This uses the
pattern [odd,even|tail]. The first element is bound to odd, the second to even,
and the remainder of the list is bound to tail.

Looking back at the Luhn algorithm, we have two cases to consider. If
the result of multiplying the even number by two is less than ten, then
that’s the number we add into the sum. We use a guard class to check
for this.

• Otherwise, we have to subtract nine from the product. That’s what the
fourth function body does.

Notice how we’re passing the updated sum around as the second parameter
to the function—this is a universal pattern when you want to accumulate a
value or values across a set of recursive function calls.

What’s Different About This Code
When you write in a language such as Java, C#, or Ruby, you’re working at
a number of levels simultaneously. Part of your brain is thinking about the
specification—what has to get done. The other part is thinking about the
implementation—the nuts and bolts of how to do it. And that’s where things
often get bogged down.

But look at that last example. We’re iterating over a set of digits. We’re selecting
those with odd or even positions. We’re performing conditional calculations.
We’re summing the result. And there isn’t a single control structure in the pro-
gram. No ifs, no loops. The code pretty much reflects the specification of what
we want to happen.

And that’s one of the reasons I’m a fan of functional programming in general,
and Elixir in particular.

The value of functional programming, though, shows up in parallel process-
ing, so let’s start getting parallel. In the next chapter, we’ll see how we can
use Elixir to run hundreds of thousands of processes, and how to coordinate
their work.

• Click HERE to purchase this book now. discuss

What’s Different About This Code • 13

http://pragprog.com/titles/ppanth
http://forums.pragprog.com/forums/ppanth

