
Extracted from:

Metaprogramming Ruby

This PDF file contains pages extracted from Metaprogramming Ruby, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2009 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2010 Paolo Perrotta.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-47-6

ISBN-13: 978-1-934356-47-0

Printed on acid-free paper.

P1.0 printing, January 2010

Version: 2010-1-29

http://www.pragprog.com

Will write code that writes code that writes code for food.

Martin Rodgers

Introduction
Metaprogramming. . . it sounds cool! It sounds like a design technique

for high-level enterprise architects or a fashionable buzzword that has

found its way into press releases.

In fact, far from being an abstract concept or a bit of marketing-speak,

metaprogramming is a collection of down-to-earth, pragmatic coding

techniques. It doesn’t just sound cool; it is cool. Here are some of the

things you can do with metaprogramming in the Ruby language:

• Say you want to write a Ruby program that connects to an external

system—maybe a web service or a Java program. With metapro-

gramming, you can write a wrapper that takes any method call

and routes it to the external system. If somebody adds methods

to the external system later, you don’t have to change your Ruby

wrapper; the wrapper will support the new methods right away.

That’s magic!

• Maybe you have a problem that would be best solved with a pro-

gramming language that’s specific to that problem. You could go

to the trouble of writing your own language, custom parser and

all. Or you could just use Ruby, bending its syntax until it looks

like a specific language for your problem. You can even write your

own little interpreter that reads code written in your Ruby-based

language from a file.

• You can remove duplication from your Ruby program at a level

that Java programmers can only dream of. Let’s say you have

twenty methods in a class, and they all look the same. How about

defining all those methods at once, with just a few lines of code?

Or maybe you want to call a sequence of similarly named meth-

ods. How would you like a single short line of code that calls all

the methods whose names match a pattern—like, say, all methods

that begin with test?

THE “M” WORD 16

• You can stretch and twist Ruby to meet your needs, rather than

adapt to the language as it is. For example, you can enhance any

class (even a core class like Array) with that method you miss so

dearly, you can wrap logging functionality around a method that

you want to monitor, you can execute custom code whenever a

client inherits from your favorite class. . . the list goes on. You are

limited only by your own, undoubtedly fertile, imagination.

Metaprogramming gives you the power to do all these things. Let’s see

what it looks like.

The “M” Word

You’re probably expecting a definition of metaprogramming right from

the start. Here’s one for you:

Metaprogramming is writing code that writes code.

We’ll get to a more precise definition in a short while, but this one will

do for now. What do I mean by “code that writes code,” and how is that

useful in your daily work? Before I answer those questions, let’s take a

step back and look at programming languages themselves.

Ghost Towns and Marketplaces

Think of your source code as a world teeming with vibrant citizens:

variables, classes, methods, and so on. If you want to get technical,

you can call these citizens language constructs.

In many programming languages, language constructs behave more

like ghosts than fleshed-out citizens: you can see them in your source

code, but they disappear before the program runs. Take C++, for exam-

ple. Once the compiler has finished its job, things like variable and

method have lost their concreteness; they are just locations in mem-

ory. You can’t ask a class for its instance methods, because by the time

you ask the question, the class has faded away. In languages like C++,

runtime is an eerily quiet place—a ghost town.

In other languages, such as Ruby, runtime looks more like a busy mar-

ketplace. Most language constructs are still there, buzzing all around.

You can even walk up to a construct and ask it questions about itself.

This is called introspection. Let’s watch introspection in action.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ppmetr

THE “M” WORD 17

Code Generators and Compilers

In metaprogramming, you write code that writes code. But isn’t
that what code generators and compilers do? For example,
you can write annotated Java code and then use a code gen-
erator to output XML configuration files. In a broad sense, this
XML generation is an example of metaprogramming. In fact,
many people think about code generation when the “m” word
comes up.

This particular brand of metaprogramming implies that you use
a program to generate or otherwise manipulate a second, dis-
tinct program—and then you run the second program. After
you run the code generator, you can actually read the gener-
ated code and (if you want to test your tolerance for pain) even
modify it by hand before you finally run it. This is also what hap-
pens under the hood with C++ templates: the compiler turns
your templates into a regular C++ program before compiling
them, and then you run the compiled program.

In this book, I’ll stick to a different meaning of metaprogram-
ming, focusing on code that manipulates itself at runtime. Only
a few languages can do that effectively, and Ruby is one of
them. You can think of this as dynamic metaprogramming to
distinguish it from the static metaprogramming of code gener-
ators and compilers.

Introspection

Take a look at this code:

Download introduction/introspection.rb

class Greeting

def initialize(text)

@text = text

end

def welcome

@text

end

end

my_object = Greeting.new("Hello")

I defined a Greeting class and created a Greeting object. I can now turn

to the language constructs and ask them questions.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/ppmetr/code/introduction/introspection.rb
http://www.pragprog.com/titles/ppmetr

THE “M” WORD 18

my_object.class # => Greeting

my_object.class.instance_methods(false) # => [:welcome]

my_object.instance_variables # => [:@text]

I asked my_object about its class, and it replied in no uncertain terms:

“I’m a Greeting.” Then I asked the class for a list of its instance methods.

(The false argument means, “List only instance methods you defined

yourself, not those ones you inherited.”) The class answered with an

array containing a single method name: welcome(). I also peeked into

the object itself, asking for its instance variables. Again, the object’s

reply was loud and clear. Since objects and classes are first-class citi-

zens in Ruby, you can get a lot of information out of running code.

However, this is only half the picture. Sure, you can read language

constructs at runtime, but what about writing them? What if you want

to add new instance methods to Greeting, alongside welcome(), while

the program is running? You might be wondering why on Earth anyone

would want to do that. Allow me to explain by telling a story.

The Story of Bob, Metaprogrammer

Bob, a Java coder who’s just starting to learn Ruby, has a grand plan:

he’ll write the biggest Internet social network ever for movie buffs. To do

that, he needs a database of movies and movie reviews. Bob makes it a

practice to write reusable code, so he decides to build a simple library

to persist objects in the database.

Bob’s First Attempt

Bob’s library maps each class to a database table and each object to

a record. When Bob creates an object or accesses its attributes, the

object generates a string of SQL and sends it to the database. All this

functionality is wrapped in a base class:

Download introduction/orm.rb

class Entity

attr_reader :table, :ident

def initialize(table, ident)

@table = table

@ident = ident

Database.sql "INSERT INTO #{@table} (id) VALUES (#{@ident})"

end

def set(col, val)

Database.sql "UPDATE #{@table} SET #{col}='#{val}' WHERE id=#{@ident}"

end

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/ppmetr/code/introduction/orm.rb
http://www.pragprog.com/titles/ppmetr

THE “M” WORD 19

def get(col)

Database.sql("SELECT #{col} FROM #{@table} WHERE id=#{@ident}")[0][0]

end

end

In Bob’s database, each table has an id column. Each Entity stores the

content of this column and the name of the table to which it refers.

When Bob creates an Entity, the Entity saves itself to the database.

Entity#set() generates SQL that updates the value of a column, and

Entity#get() generates SQL that returns the value of a column. (In case

you care, Bob’s Database class returns record sets as arrays of arrays.)

Bob can now subclass Entity to map to a specific table. For example,

class Movie maps to a database table named movies:

class Movie < Entity

def initialize(ident)

super("movies", ident)

end

def title

get("title")

end

def title=(value)

set("title", value)

end

def director

get("director")

end

def director=(value)

set("director", value)

end

end

A Movie has two methods for each field: a reader such as Movie#title()

and a writer such as Movie#title=(). Bob can now load a new movie into

the database by firing up the Ruby command-line interpreter and typ-

ing the following:

movie = Movie.new(1)

movie.title = "Doctor Strangelove"

movie.director = "Stanley Kubrick"

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ppmetr

THE “M” WORD 20

This code creates a new record in movies, which has values 1, Doc-

tor Strangelove, and Stanley Kubrick for the fields id, title, and director,

respectively.1

Proud of himself, Bob shows the code to his older, more experienced

colleague Bill. Bill stares at the screen for a few seconds and proceeds

to shatter Bob’s pride into tiny little pieces. “There’s a lot of duplicated

code here,” Bill says. “You have a movies table with a title column in

the database, and you have a Movie class with a @title field in the code.

You also have a title() method, a title=() method, and two "title" string

constants. You can solve this problem with way less code if you sprinkle

some metaprogramming magic over it.”

Enter Metaprogramming

At the suggestion of his expert-coder friend, Bob looks for a meta-

programming-based solution. He finds that very thing in the Active-

Record library, a popular Ruby library that maps objects to database

tables.2 After a short tutorial, Bob is able to write the ActiveRecord ver-

sion of the Movie class:

class Movie < ActiveRecord::Base

end

Yes, it’s as simple as that. Bob just subclassed the ActiveRecord::Base

class. He didn’t have to specify a table to map Movies to. Even better,

he didn’t have to write boring, almost identical methods such as title()

and director(). Everything just works:

movie = Movie.create

movie.title = "Doctor Strangelove"

movie.title # => "Doctor Strangelove"

The previous code creates a Movie object that wraps a record in the

movies table, then accesses the record’s title field by calling Movie#title()

and Movie#title=(). But these methods are nowhere to be found in the

source code. How can title() and title=() exist, if they’re not defined any-

where? You can find out by looking at how ActiveRecord works.

The table name part is straightforward: ActiveRecord looks at the name

of the class through introspection and then applies some simple con-

1. You probably know this already, but it doesn’t hurt to refresh your memory: in Ruby,

movie.title = "Doctor Strangelove" is actually a disguised call to the title=() method—the same

as movie.title=("Doctor Strangelove").
2. ActiveRecord is part of Rails, the quintessential Ruby framework. You’ll read more

about Rails and ActiveRecord in Chapter 7, The Design of ActiveRecord, on page 192.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ppmetr

THE “M” WORD 21

ventions. Since the class is named Movie, ActiveRecord maps it to a

table named movies. (This library knows how to find plurals for English

words.)

What about methods like title=() and title(), which access object attri-

butes (accessor methods for short)? This is where metaprogramming

comes in: Bob doesn’t have to write those methods. ActiveRecord de-

fines them automatically, after inferring their names from the database

schema. ActiveRecord::Base reads the schema at runtime, discovers that

the movies table has two columns named title and director, and defines

accessor methods for two attributes of the same name. This means that

ActiveRecord defines methods such as Movie#title() and Movie#director=()

out of thin air while the program runs!3

This is the “yang” to the introspection “yin”: rather than just reading

from the language constructs, you’re writing into them. If you think

this is an extremely powerful feature, well, you would be right.

The “M” Word Again

Now you have a more formal definition of metaprogramming:

Metaprogramming is writing code that manipulates language constructs

at runtime.

How did the authors of ActiveRecord apply this concept? Instead of

writing accessor methods for each class’s attributes, they wrote code

that defines those methods at runtime for any class that inherits from

ActiveRecord::Base. This is what I meant when I talked about “writing

code that writes code.”

You might think that this is exotic, seldom-used stuff, but if you look

at Ruby, as we’re about to do, you’ll see that it’s used all around the

place.

Metaprogramming and Ruby

Remember our earlier talk about ghost towns and marketplaces? If you

want to “manipulate language constructs,” those constructs must exist

at runtime. In this respect, some languages are definitely better than

others. Take a quick glance at a few languages and how much control

they give you at runtime.

3. The real implementation of accessors in ActiveRecord is a bit more subtle than I

describe here, as you’ll see in Chapter 8, Inside ActiveRecord, on page 208.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ppmetr

THE “M” WORD 22

A program written in C spans two different worlds: compile time, where

you have language constructs such as variables and functions, and

runtime, where you just have a bunch of machine code. Since most

information from compile time is lost at runtime, C doesn’t support

metaprogramming or introspection. In C++, some language constructs

do survive compilation, and that’s why you can ask a C++ object for its

class. In Java, the distinction between compile time and runtime is even

fuzzier. You have enough introspection available to list the methods of

a class or climb up a chain of superclasses.

Ruby is arguably the most metaprogramming-friendly of the current

fashionable languages. It has no compile time at all, and most con-

structs in a Ruby program are available at runtime. You don’t come up

against a brick wall dividing the code that you’re writing from the code

that your computer executes when you run the program. There is just

one world.

In this one world, metaprogramming is everywhere. In fact, metapro-

gramming is so deeply entrenched in the Ruby language that it’s not

even sharply separated from “regular” programming. You can’t look at

a Ruby program and say, “This part here is metaprogramming, while

this other part is not.” In a sense, metaprogramming is a routine part

of every Ruby programmer’s job.

To be clear, metaprogramming isn’t an obscure art reserved for Ruby

gurus, and it’s also not a bolt-on power feature that’s useful only for

building something as sophisticated as ActiveRecord. If you want to

take the path to advanced Ruby coding, you’ll find metaprogramming

at every step. Even if you’re happy with the amount of Ruby you already

know and use, you’re still likely to stumble on metaprogramming in

your coding travels: in the source of popular frameworks, in your fa-

vorite library, and even in small examples from random blogs. Until

you master metaprogramming, you won’t be able to tap into the full

power of the Ruby language.

There is also another, less obvious reason why you might want to learn

metaprogramming. As simple as Ruby looks at first, you can quickly

become overwhelmed by its subtleties. Sooner or later, you’ll be ask-

ing yourself questions such as “Can an object call a private method on

another object of the same class?” or “How can you define class meth-

ods by importing a module?” Ultimately, all of Ruby’s seemingly compli-

cated behaviors derive from a few simple rules. Through metaprogram-

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ppmetr

ABOUT THIS BOOK 23

ming, you can get an intimate look at the language, learn those rules,

and get answers to your nagging questions.

Now that you know what metaprogramming is about, you’re ready to

dive in this book.

About This Book

Part I, Metaprogramming Ruby, is the core of the book. It tells the story

of your week in the office, paired with Bill, an experienced Ruby coder:

• Ruby’s object model is the land in which metaprogramming lives.

Chapter 1, Monday: The Object Model, on page 29 provides a map

to this land. This chapter introduces you to the most basic metapro-

gramming techniques. It also reveals the secrets behind Ruby

classes and method lookup, the process by which Ruby finds and

executes methods.

• Once you understand method lookup, you can do some fancy

things with methods: you can create methods at runtime, inter-

cept method calls, route calls to another object, or even accept

calls to methods that don’t exist. All these techniques are ex-

plained in Chapter 2, Tuesday: Methods, on page 62.

• Methods are just one member of a larger family also including enti-

ties such as blocks and lambdas. Chapter 3, Wednesday: Blocks,

on page 93, is your field manual for everything related to these

entities. It also presents an example of writing a domain-specific

language, a powerful conceptual tool that’s gaining popularity in

today’s development community. And, of course, this chapter

comes with its own share of tricks, explaining how you can pack-

age code and execute it later or how you can carry variables across

scopes.

• Speaking of scopes, Ruby has a special scope that deserves a close

look: the scope of class definitions. Chapter 4, Thursday: Class

Definitions, on page 124, talks about this scope and introduces

you to some of the most powerful weapons in a metaprogrammer’s

arsenal. It also introduces eigenclasses (also known as singleton

classes), the last concept you need to make sense of Ruby’s most

perplexing features.

• Finally, Chapter 5, Friday: Code That Writes Code, on page 162

puts it all together through an extended example that uses tech-

niques from all the previous chapters. The chapter also rounds out

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ppmetr

ABOUT THIS BOOK 24

your metaprogramming training with two new topics: the some-

what controversial eval() method and the callback methods that

you can use to intercept object model events.

Part II of the book, Metaprogramming in Rails, is a case study in meta-

programming. It contains three short chapters that focus on different

areas of Rails, the flagship Ruby framework. By looking at Rails’ source

code, you’ll see how master Ruby coders use metaprogramming in the

real world to develop great software.

Before you get down to reading this book, you should know about the

three appendixes. Appendix A, on page 242, describes some common

techniques that you’ll probably find useful even if they’re not, strictly

speaking, metaprogramming. Appendix B, on page 254, is a look at

domain-specific languages. Appendix C, on page 258, is a quick refer-

ence to all the spells in the book, complete with code examples.

“Wait a minute,” I can hear you saying. “What the heck are spells?” Oh,

right, sorry. Let me explain.

Spells

This book contains a number of metaprogramming techniques that you

can use in your own code. Some people might call these patterns or

maybe idioms. Neither of these terms is very popular among Rubyists,

so I’ll call them spells instead. Even if there’s nothing magical about

them, they do look like magic spells to Ruby newcomers!

You’ll find references to spells everywhere in the book. I reference a

spell by using the convention Blank Slate (86) or String of Code (165),

for example. The number in parentheses is the page where the spell

receives a name. If you need a quick reference to a spell, in Appendix C,

on page 258, you’ll find a complete spell book.

Quizzes

Every now and then, this book also throws a quiz at you. You can skip

these quizzes and just read the solution, but you’ll probably want to

solve them just because they’re fun.

Some quizzes are traditional coding exercises; others require you to get

off your keyboard and think. All quizzes include a solution, but most

quizzes have more than one possible answer. Go wild and experiment!

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ppmetr

ABOUT THIS BOOK 25

Notation Conventions

Throughout this book, I use a typewriter-like font for code examples.

To show you that a line of code results in a value, I print that value as

a comment on the same line:

-1.abs # => 1

If a code example is supposed to print a result rather than return it, I

show that result after the code:

puts 'Testing... testing...'

⇒ Testing... testing...

In most cases, the text uses the same code syntax that Ruby uses:

MyClass.my_method is a class method, MyClass::MY_CONSTANT is a con-

stant defined within a class, and so on. There are a couple of exceptions

to this rule. First, I identify instance methods with the hash notation,

like the Ruby documentation does (MyClass#my_method). This is useful

when trying to differentiate class methods and instance methods. Sec-

ond, I use a hash prefix to identify eigenclasses (#MyEigenclass).

Some of the code in this book comes straight from existing open source

libraries. To avoid clutter (or to make the code easier to understand

in isolation), I’ll sometimes take the liberty of editing the original code

slightly. However, I’ll do my best to keep the spirit of the original source

intact.

Unit Tests

This book follows two developers as they go about their day-to-day

work. As the story unfolds, you may notice that the developers rarely

write unit tests. Does this book condone untested code?

Please rest assured that it doesn’t. In fact, the original draft of this

book included unit tests for all code examples. In the end, I found that

those tests distracted from the metaprogramming techniques that are

the meat of the book—so the tests fell on the cutting-room floor.

This doesn’t mean you shouldn’t write tests for your own metaprogram-

ming endeavors! In fact, you’ll find specific advice on testing metapro-

gramming code in Chapter 9, Metaprogramming Safely, on page 226.

Ruby Versions

One of the joys of Ruby is that it’s continuously changing and improv-

ing. However, this very fluidity can be problematic when you try a piece

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ppmetr

ABOUT YOU 26

of code on the latest version of the language only to find that it doesn’t

work anymore. This is not overly common, but it can happen with

metaprogramming, which pushes Ruby to its limits.

As I write this text, the latest stable release of Ruby is 1.9.1 and is

labeled a “developer” version. Developer versions are meant as test beds

for new language features, but Ruby 1.9 is generally considered stable

enough for real production work—so I used it to write this book. You

can stick with Ruby 1.8 if you prefer. Throughout the text, I’ll tell you

which features behave differently on the two versions of Ruby.

The next production version of Ruby is going to be Ruby 2.0, which will

likely introduce some big changes. At the time of writing this book, this

version is still too far away to either worry or rejoice about. Once 2.0

comes out, I’ll update the text.

When I talk about Ruby versions, I’m talking about the “official” inter-

preter (sometimes called MRI for Matz’s Ruby Interpreter4). To add to

all the excitement (and the confusion) around Ruby, some people are

also developing alternate versions of the language, like JRuby, which

runs on the Java Virtual Machine,5 or IronRuby, which runs on the

Microsoft .NET platform.6 As I sit here writing, most of these alternate

Ruby implementations are progressing nicely, but be aware that some

of the examples in this book might not work on some of these alternate

implementations.

About You

Most people consider metaprogramming an advanced topic. To play

with the constructs of a Ruby program, you have to know how these

constructs work in the first place. How do you know whether you’re

enough of an “advanced” Rubyist to deal with metaprogramming? Well,

if you understood the code in the previous sections without much trou-

ble, you are well equipped to move forward.

If you’re not confident about your skills, you can take a simple self-

test. Which kind of code would you write to iterate over an array? If

you thought about the each() method, then you know enough Ruby

to follow the ensuing text. If you thought about the for keyword, then

4. http://www.ruby-lang.org

5. http://jruby.codehaus.org

6. http://www.ironruby.net

CLICK HERE to purchase this book now.

http://www.ruby-lang.org
http://jruby.codehaus.org
http://www.ironruby.net
http://www.pragprog.com/titles/ppmetr

ABOUT YOU 27

you’re probably new to Ruby. In the second case, you can still embark

on this metaprogramming adventure—just take an introductory Ruby

text along with you!7

Are you on board, then? Great! Let’s dive in.

7. I suggest the seminal Pickaxe [TFH08] book. You can also find an excellent interactive

introduction in the Try Ruby! tutorial on http://tryruby.sophrinix.com.

CLICK HERE to purchase this book now.

http://tryruby.sophrinix.com
http://www.pragprog.com/titles/ppmetr

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Metaprogramming Ruby’s Home Page

http://pragprog.com/titles/ppmetr

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/ppmetr.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/ppmetr
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/ppmetr
www.pragprog.com/catalog

