
Extracted from:

Metaprogramming Ruby

This PDF file contains pages extracted from Metaprogramming Ruby, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2009 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2010 Paolo Perrotta.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-47-6

ISBN-13: 978-1-934356-47-0

Printed on acid-free paper.

P1.0 printing, January 2010

Version: 2010-1-29

http://www.pragprog.com

Chapter 2

Tuesday: Methods
Yesterday you learned about the Ruby object model and how to make

Ruby classes sing and dance for you. Today you’re holding all calls to

focus on methods.

As you know, the objects in your code talk to each other all the time.

Some languages—Java, for one—feature a compiler that presides over

this chatting. For every method call, the compiler checks to see that

the receiving object has a matching method. This is called static type

checking, and the languages that adopt it are called static languages.

So, for example, if you call talk_simple() on a Lawyer object that has no

such method, the compiler protests loudly.

Dynamic languages—such as Python and Ruby—don’t have a compiler

policing method calls. As a consequence, you can start a program that

calls talk_simple() on a Lawyer, and everything works just fine—that is,

until that specific line of code is executed. Only then does the Lawyer

complain that it doesn’t understand that call.

Admittedly, that’s one advantage of static type checking: the compiler

can spot some of your mistakes before the code runs. Before you ask the

obvious question, realize that this protectiveness comes at a high price.

Static languages force you to write lots of tedious, repetitive methods—

these are the so-called boilerplate methods—just to make the compiler

happy. (If you’re a Java programmer, just think of all the “get” and “set”

methods you’ve written in your life or the innumerable methods that do

nothing but delegate to some other object.)

A DUPLICATION PROBLEM 63

In Ruby, boilerplate methods aren’t a problem, because you can eas-

ily avoid them with techniques that would be impractical or just plain

impossible in a static language. In this chapter, we home in on those

techniques.

2.1 A Duplication Problem

Where you and Bill have a problem with duplicated code.

Your boss is happy with the job that you and Bill did yesterday. Today,

she gives the two of you a more serious integration assignment.

To give you a bit of history, some folks in the purchasing department

are concerned that developers are spending oodles of company money

on computing gear. To make sure things don’t get out of hand, they’re

requesting a system that automatically flags expenses more than $99.

(You read that right: ninety-nine. The purchasing department isn’t fool-

ing around.)

Before you and Bill, some developers took a stab at the project, coding

a report that lists all the components of each computer in the company

and how much each component costs. To date they haven’t plugged in

any real data. Here’s where you and Bill come in.

The Legacy System

Right from the start, the two of you have a challenge on your hands: the

data you need to load into the already established program is stored in

a legacy system stuck behind an awkwardly coded class named DS (for

“data source”):

Download methods/computer/data_source.rb

class DS

def initialize # connect to data source...

def get_mouse_info(workstation_id) # ...

def get_mouse_price(workstation_id) # ...

def get_keyboard_info(workstation_id) # ...

def get_keyboard_price(workstation_id) # ...

def get_cpu_info(workstation_id) # ...

def get_cpu_price(workstation_id) # ...

def get_display_info(workstation_id) # ...

def get_display_price(workstation_id) # ...

...and so on

DS#initialize() connects to the data system when you create a new DS()

object. The other methods—and there are dozens of them—take a work-

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/ppmetr/code/methods/computer/data_source.rb
http://www.pragprog.com/titles/ppmetr

A DUPLICATION PROBLEM 64

station identifier and return descriptions and prices for the computer’s

components. The output is in the form of strings, with prices expressed

as integer numbers rounded to the nearest dollar. With Bill standing by

to offer moral support, you quickly try the class in irb:

ds = DS.new

ds.get_cpu_info(42) # => 2.16 Ghz

ds.get_cpu_price(42) # => 150

ds.get_mouse_info(42) # => Dual Optical

ds.get_mouse_price(42) # => 40

It looks like workstation number 42 has a 2.16GHz CPU and a luxuri-

ous $40 dual optical mouse. This is enough data to get you started.

Double, Treble. . . Trouble

You and Bill have to wrap DS into an object that fits the reporting appli-

cation. This means each Computer must be an object. This object has a

single method for each component, returning a string describing both

the component and its price. Remember that price limit the purchasing

department set? Keeping this requirement in mind, you know that if the

component costs $100 or more, the string must begin with an asterisk

to draw people’s attention.

You kick off development by writing the first three methods in the Com-

puter class:

Download methods/computer/boring.rb

class Computer

def initialize(computer_id, data_source)

@id = computer_id

@data_source = data_source

end

def mouse

info = @data_source.get_mouse_info(@id)

price = @data_source.get_mouse_price(@id)

result = "Mouse: #{info} ($#{price})"

return "* #{result}" if price >= 100

result

end

def cpu

info = @data_source.get_cpu_info(@id)

price = @data_source.get_cpu_price(@id)

result = "Cpu: #{info} ($#{price})"

return "* #{result}" if price >= 100

result

end

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/ppmetr/code/methods/computer/boring.rb
http://www.pragprog.com/titles/ppmetr

DYNAMIC METHODS 65

def keyboard

info = @data_source.get_keyboard_info(@id)

price = @data_source.get_keyboard_price(@id)

result = "Keyboard: #{info} ($#{price})"

return "* #{result}" if price >= 100

result

end

...

end

At this point in the development of Computer, you find yourself bogged

down in a swampland of repetitive copy and paste. You have a long list

of methods left to deal with, and you should also write tests for each

and every method, because it’s easy to make mistakes in duplicated

code. This is getting boring fast—not to mention painful.

Bill is right there with you, verbalizing precisely what’s going through

your head: “This is just the same method again and again, with some

minor changes.” You turn to each other and ask simultaneously, as if

on cue, “How can we refactor it?”

Bill’s Plan

“I can think of not one but two different ways to remove this duplica-

tion,” Bill brags. He suggests using either Dynamic Methods or a special

method called method_missing(). By trying both solutions, you and Bill

can decide which one you like better. You agree to start with Dynamic

Methods and get to method_missing() after that.

2.2 Dynamic Methods

Where you learn how to call and define methods dynamically and remove

the duplicated code.

“As I mentioned, we can remove the duplication in our code with either

Dynamic Methods or method_missing(),” Bill recalls. “Forget about

method_missing() for now—we’ll get to that this afternoon. To introduce

Dynamic Methods, allow me to tell you a story from my youth,” he says.

“When I was a young developer learning C++,” Bill muses, “my men-

tors told me that when you call a method, you’re actually sending a

message to an object. It took me a while to get used to that concept.

Of course, if I’d been using Ruby back then, that notion of sending

messages would have come more naturally to me.” Bill launches into a

mini-presentation.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ppmetr

DYNAMIC METHODS 66

Calling Methods Dynamically

When you call a method, you usually do so using the standard dot

notation:

Download methods/dynamic_call.rb

class MyClass

def my_method(my_arg)

my_arg * 2

end

end

obj = MyClass.new

obj.my_method(3) # => 6

Bill demonstrates how you can also call MyClass#my_method() using

Object#send() in place of the dot notation:

obj.send(:my_method, 3) # => 6

The previous code still calls my_method(), but it does so through send().

The first argument to send() is the message that you’re sending to the

object—that is, the name of a method. You can use a string or a symbol,

but symbols are considered more kosher (see the sidebar on the next

page). Any remaining arguments (and the block, if one exists) are simply

passed on to the method.

“Wait a minute,” you interject. “Why on Earth would I use send() instead

of the plain old dot notation?” Bill is glad you asked, pointing out that

this is one of the cool things about Ruby. With send(), the name of the

method that you want to call becomes just a regular argument. You can

wait literally until the very last moment to decide which method to call,

while the code is running. This technique is called Dynamic Dispatch, Spell: Dynamic Dispatch

and you’ll find it wildly useful. To help reveal its magic, Bill shows you

a couple of real-life examples.

The Camping Example

One example of Dynamic Dispatch comes from Camping, a minimalist

Ruby web framework. A Camping application stores its configuration

parameters as key-value pairs in a file created with YAML, a simple and

very popular serialization format.1

1. Camping, a framework written by “_why the lucky stiff,” can be installed with gem

install camping. YAML stands for “Yaml Ain’t Markup Language,” and you can learn more

about it at http://www.yaml.org.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/ppmetr/code/methods/dynamic_call.rb
http://www.yaml.org
http://www.pragprog.com/titles/ppmetr

DYNAMIC METHODS 67

Symbols

If you prefix any sequence of characters with a colon (actu-
ally, any sequence that would make a legal variable name), it
becomes a symbol:

x = :this_is_a_symbol

Symbols and strings are not related, and they belong to entirely
different classes. Nevertheless, symbols are similar enough
to strings that most Ruby beginners are confused by them.
“What’s the point of having symbols at all? Why can’t I just use
regular strings everywhere?” they ask.

Different people will provide different answers to these ques-
tions. Some might point out that symbols are different from
strings because symbols are immutable: you can change the
characters inside a string, but you can’t do that for sym-
bols. Also, some operations (such as comparisons) are faster
on symbols than they are on strings. But, choosing between
symbols and strings basically comes down to conventions. In
most cases, symbols are used as names of things—in particular,
names of metaprogramming-related things such as methods.

For example, when you call Object#send(), you need to pass
it the name of a method as a first argument. Although send()
accepts this name as either a symbol or a string, symbols are
usually considered more appropriate:

rather than: 1.send("+", 2)
1.send(:+, 2) # => 3

Regardless, you can easily convert a string to a symbol (by call-
ing either String#to_sym() or String#intern()) or back (by calling
either Symbol#to_s() or Symbol#id2name()).

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ppmetr

DYNAMIC METHODS 68

The configuration file for a blog application might look like this:

admin : Bill

title : Rubyland

topic : Ruby and more

Camping copies keys and values from the file into its own configuration

object. (This object is an OpenStruct. You can read more about this class

in Section 2.3, The OpenStruct Example, on page 77.) Assume that you

store your application’s configuration in a conf object. In an ideal world,

the configuration code for the blog application would look like this:

conf.admin = 'Bill'

conf.title = 'Rubyland'

conf.topic = 'Ruby and more'

The sad fact is, in real life, Camping’s source can’t contain this kind of

code. That’s because it can’t know in advance which keys you need in

your specific application—so it can’t know which methods it’s supposed

to call. It can discover the keys you need only at runtime, by parsing the

YAML file. For this reason, Camping resorts to Dynamic Dispatch. For

each key-value pair, it composes the name of an assignment method,

such as admin=(), and sends the method to conf:

Download gems/camping-1.5/bin/camping

Load configuration if any

if conf.rc and File.exists?(conf.rc)

YAML.load_file(conf.rc).each do |k,v|

conf.send("#{k}=", v)

end

end

Neat, huh?

The Test::Unit Example

Another example of Dynamic Dispatch (66) comes from the Test::Unit

standard library. Test::Unit uses a naming convention to decide which

methods are tests. A TestCase looks inside its own public methods and

selects the methods that have names starting with test:

method_names = public_instance_methods(true)

tests = method_names.delete_if {|method_name| method_name !~ /^test./}

Now TestCase has an array of all test methods. Later, it uses send() to call

each method in the array.2 This particular flavor of Dynamic Dispatch

2. To nitpick, TestCase uses a synonym of send() named __send__(). You’ll find out why in

the sidebar on page 89.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/ppmetr/code/gems/camping-1.5/bin/camping
http://www.pragprog.com/titles/ppmetr

DYNAMIC METHODS 69

Privacy Matters

Remember what Spiderman’s uncle used to say? “With great
power comes great responsibility.” The Object#send() method
is very powerful—perhaps too powerful. In particular, you can
call any method with send(), including private methods. Short
of using a Context Probe (107), this is the easiest way to peek
into an object’s private matters.

Some Rubyists think that send() makes it too easy to unwillingly
break encapsulation. Ruby 1.9 experimented with changing
send()’s behavior, but the changes were ultimately reverted. As
of Ruby 1.9.1, send() can still call private methods—and many
libraries use it just for that purpose. On the other hand, you have
a new public_send() method that respects the receiver’s pri-
vacy.

is sometimes called Pattern Dispatch, because it filters methods based Spell: Pattern Dispatch

on a pattern in their names.

Bill leans back in his chair. “Now you know about send() and Dynamic

Dispatch, but there is more to Dynamic Methods than that. You’re not

limited to calling methods dynamically. You can also define methods

dynamically. I’ll show you how.”

Defining Methods Dynamically

You can define a method on the spot with Module#define_method(). You

just need to provide a method name and a block, which becomes the

method body:

Download methods/dynamic_definition.rb

class MyClass

define_method :my_method do |my_arg|

my_arg * 3

end

end

obj = MyClass.new

obj.my_method(2) # => 6

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/ppmetr/code/methods/dynamic_definition.rb
http://www.pragprog.com/titles/ppmetr

DYNAMIC METHODS 70

define_method() is executed within MyClass, so my_method() is defined as

an instance method of MyClass.3 This technique of defining a method at

runtime is called a Dynamic Method. Spell: Dynamic Method

You learned how to use Module#define_method() in place of the def key-

word to define a method and how to use send() in place of the dot nota-

tion to call a method. Now you can go back to your and Bill’s original

problem and put this knowledge to work.

Refactoring the Computer Class

Recall the code that pulled you and Bill into this dynamic discussion:

Download methods/computer/boring.rb

class Computer

def initialize(computer_id, data_source)

@id = computer_id

@data_source = data_source

end

def mouse

info = @data_source.get_mouse_info(@id)

price = @data_source.get_mouse_price(@id)

result = "Mouse: #{info} ($#{price})"

return "* #{result}" if price >= 100

result

end

def cpu

info = @data_source.get_cpu_info(@id)

price = @data_source.get_cpu_price(@id)

result = "Cpu: #{info} ($#{price})"

return "* #{result}" if price >= 100

result

end

def keyboard

info = @data_source.get_keyboard_info(@id)

price = @data_source.get_keyboard_price(@id)

result = "Keyboard: #{info} ($#{price})"

return "* #{result}" if price >= 100

result

end

...

end

3. There is also an Object#define_method() that defines a Singleton Method (135).

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/ppmetr/code/methods/computer/boring.rb
http://www.pragprog.com/titles/ppmetr

DYNAMIC METHODS 71

Now that you know about send() and define_method(), you and Bill can

get to work and remove the duplication in Computer. Time to refactor!

Step 1: Adding Dynamic Dispatches

You and Bill start, extracting the duplicated code into its own message-

sending method:

Download methods/computer/send.rb

class Computer

def initialize(computer_id, data_source)

@id = computer_id

@data_source = data_source

end

def mouse

component :mouse

end

def cpu

component :cpu

end

def keyboard

component :keyboard

end

def component(name)

info = @data_source.send "get_#{name}_info", @id

price = @data_source.send "get_#{name}_price", @id

result = "#{name.to_s.capitalize}: #{info} ($#{price})"

return "* #{result}" if price >= 100

result

end

end

A call to mouse() is delegated to component(), which in turn calls DS#

get_mouse_info() and DS#get_mouse_price(). The call also writes the cap-

italized name of the component in the resulting string. (Since compo-

nent() expects the name as a symbol, it converts the symbol to a string

with Symbol#to_s().) You open an irb session and smoke-test the new

Computer:

my_computer = Computer.new(42, DS.new)

my_computer.cpu # => * Cpu: 2.16 Ghz ($220)

This new version of Computer is a step forward, because it contains

far fewer duplicated lines, but you still have to write dozens of similar

methods. To avoid writing all those methods, use define_method().

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/ppmetr/code/methods/computer/send.rb
http://www.pragprog.com/titles/ppmetr

DYNAMIC METHODS 72

Step 2: Generating Methods Dynamically

You and Bill refactor Computer to use define_method():

Download methods/computer/dynamic.rb

class Computer

def initialize(computer_id, data_source)

@id = computer_id

@data_source = data_source

end

def self.define_component(name)

define_method(name) {

info = @data_source.send "get_#{name}_info", @id

price = @data_source.send "get_#{name}_price", @id

result = "#{name.to_s.capitalize}: #{info} ($#{price})"

return "* #{result}" if price >= 100

result

}

end

define_component :mouse

define_component :cpu

define_component :keyboard

end

Note that define_method() is executed inside the definition of Computer,

where Computer is the implicit self.4 This means you’re calling define_

component() on Computer, so it must be a class method.

You quickly test the slimmed-down Computer class in irb and discover

that it still works. This is great news!

Step 3: Sprinkling the Code with Introspection

The latest Computer contains minimal duplication, but you can push it

even further and remove the duplication altogether. How? By getting rid

of all the define_component() methods. You can do that by introspecting

the data_source argument and extracting the names of all components:

Download methods/computer/more_dynamic.rb

class Computer

def initialize(computer_id, data_source)

@id = computer_id

@data_source = data_source

data_source.methods.grep(/^get_(.*)_info$/) { Computer.define_component $1 }

end

4. See Section 1.5, Discovering self , on page 55.

CLICK HERE to purchase this book now.

http://media.pragprog.com/titles/ppmetr/code/methods/computer/dynamic.rb
http://media.pragprog.com/titles/ppmetr/code/methods/computer/more_dynamic.rb
http://www.pragprog.com/titles/ppmetr

METHOD_MISSING() 73

def self.define_component(name)

define_method(name) {

info = @data_source.send "get_#{name}_info", @id

price = @data_source.send "get_#{name}_price", @id

result = "#{name.capitalize}: #{info} ($#{price})"

return "* #{result}" if price >= 100

result

}

end

end

The new line in initialize() is where the magic happens. To understand

it, you need to know a couple of things. First, if you pass a block

to String#grep(), the block is evaluated for each element that matches

the regular expression. Second, the string matching the parenthesized

part of the regular expression is stored in the global variable $1. So,

if data_source has methods named get_cpu_info() and get_mouse_info(),

this code ultimately calls Computer.define_component() twice, with the

strings "cpu" and "mouse". Note that you’re calling define_component()

with a string rather than a symbol, so you don’t need to convert the

argument to string.

The duplicated code is finally gone for good. As a bonus, you don’t even

have to write or maintain the list of components. If someone adds a

new component to DS, the Computer class will support it automatically.

Wonderful!

Let’s Try That Again!

Your refactoring was a resounding success, but Bill is not willing to

stop here. “We said that we were going to try two different solutions

to this problem, remember? We’ve only found one, involving Dynamic

Dispatch (66) and Dynamic Methods (70).” Although it has served the

two of you well, to be fair, you need to give the other solution a chance.

“For this second solution,” Bill continues, “we need to talk about some

strange methods that are not really methods and a very special method

named method_missing().”

2.3 method_missing()

Where you listen to spooky stories about Ghost Methods and dynamic

proxies and you try a second way to remove duplicated code.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ppmetr

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Metaprogramming Ruby’s Home Page

http://pragprog.com/titles/ppmetr

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/ppmetr.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/ppmetr
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/ppmetr
www.pragprog.com/catalog

