
Extracted from:

Ship It!
A Practical Guide to

Successful Software Projects

This PDF file contains pages extracted from Ship It!, one of the Pragmatic Starter Kit
series of books for project teams. For more information, visit
http://www.pragmaticprogrammer.com/starter_kit.

Note: This extract contains some colored text (particularly in code listing). This is
available only in online versions of the books. The printed versions are black and white.
Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2005 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.



We are what we repeatedly do.
Excellence, then, is not an act, but a
habit.

Aristotle

Chapter 1

Introduction
Many software developers today are frustrated. They work long, hard
hours, but their teams can’t seem to finish the current project. It’s
not for lack of effort or desire; everyone on the team wants to wrap the
project up cleanly, but no one knows how to pull it all together. It’s very
difficult to find the time to do the reading and experimentation to find
out what works and how to make it work in your shop. Most people are
too busy working to embark on this type of research.

That’s where Ship It! steps in. This book is a collection of basic, prac-
tical advice that has been proven in the field, on multiple projects, and
in companies of all sizes. It’s what we’ve encountered that works. We’re
not consultants who were in and out in a few weeks; we worked day
in and day out at these companies. We didn’t get to drop in ideas that
sounded good and then move off to the next engagement. When things
didn’t work, we were still there to see them fail. On the other hand, we
also got to see when things went really well.

Some of these ideas have been blatantly lifted from well-known soft-
ware methodologies, and we’ve tried to give credit where it’s due. Other
ideas were forged from blood, sweat, and tears. We’ve experimented
with many tools, techniques, and best practices, and when something
worked, we kept it. When it flopped, we tossed it. Very little you will
see here is blindingly original (this is a Good Thing). Instead, we “stood
on the shoulders of giants,” selecting ideas from the best minds in the
industry, and transformed them into what you see here.

Fifty to seventy percent of software teams today don’t use basic, well-
known software practices ([Cus03]). Quite often, this isn’t because they
don’t know what to do but because they simply don’t know how to get
the practices started in the here and now. We’ll show you how to sell



HABITUAL EXCELLENCE 2

management on each idea, lay out practical steps to get you started,
and then offer warning signs to look for so you won’t veer off-track.

Ship It! was written by developers who have been “in the trenches.”
This book is our experience, not theory, ranging from small startups
to the largest privately held software company in the world. It’s a
methodology-agnostic, down-to-earth guide for making projects work.

We’ve tried to model the book after the popular Pragmatic Bookshelf
titles: a practical, light, easy read. Our hope is to build on the founda-
tion the other Pragmatic titles have begun.

1.1 Habitual Excellence

So how does Aristotle’s quote fit here? “We are what we repeatedly do.
Excellence, then, is not an act, but a habit.” Excellence isn’t defined
by turning out one great product (or a number of great products). It
comes out of what we do each day: our habits. Extraordinary products
are merely side effects of good habits.

Applying this quote to ourselves (both professionally and personally)
requires that we recognize our lives are side effects of our habits, so
we’d better choose our habits carefully. Most people just randomly
fall into their work routines, for a variety of reasons: this is how you
learned it, it’s how your boss used to do it, and so on. We can do better.

Purposely seek out good habits, and add them to your daily routine.

Try this experiment. Find a development methodology to research, and
extract one habit that looks good to you (and that can be used by itself).
Put it to use for a week. If you like it and it seems beneficial, continue
using it for a month. Practice the new habit until it becomes a natural
part of your routine, and then start the process all over again. Just
as you lay a foundation brick by brick, repeat this process, and build
a foundation of excellence one new habit at a time. Never be afraid to
remove something that doesn’t work in your circumstance, and don’t
keep a practice just because it’s well-known or popular. Forge out your
own way, based on what works for you and what doesn’t.

“How we spend our days is, of course, how we spend our lives.”1 If
that’s so, then we must be careful how we spend our days.

1Annie Dillard (U.S. author, poet, and Pulitzer prize winner in 1975 for nonfiction)

CLICK HERE to purchase this book now.



A PRAGMATIC POINT OF VIEW 3

TIP 1

Choose your habits

Don’t fall into habits by accident. Choose your habits deliberately.

1.2 A Pragmatic Point of View

This book is not an academic analysis of why something should or
shouldn’t work, and it isn’t a catalog of available practices and method-
ologies that you can choose from.

Instead, this book presents what has worked for us on real-life software
projects. We would introduce a new tool or practice and use it until
it was evident whether it worked. We kept those that worked in our
software development toolbox and carried them with us. Eventually, it
actually appeared we knew what we were doing! We hope these tools
and practices will work well for you also.

We’ve spent time in startups that didn’t have the luxury of using a
methodology simply because it was “the right one.” Our circumstances
forced us to find ideas that solved problems that we could put to work
immediately. We’ve also worked in larger companies that had signifi-
cant resources and technology at their disposal. We’ve found that even
large companies don’t want to use a tool just because it’s elegant or
because some guru endorses it. They want solutions that solve today’s
problems quickly and inexpensively. So we picked up a habit here,
and dropped a habit there, until our toolkit was generic enough to be
portable but still solved problems effectively. This book is a collection
of good habits that we’ve used that will make a difference in your shop
as well—the results can be astonishing.

To illustrate: let us tell you a Tale of Two Software Shops (with apologies
to Charles Dickens).

The first shop was a mess. They’d purchased rather expensive source
code management software but never installed it. As a result, they lost
the source code for the demo they were showing to potential customers.
No one was sure what features were supposed to be included in the
product, but the entire development team was working on it nonethe-
less. The code was unstable and would crash every five minutes or so
(usually at the worst possible moment—during live demos). This mess
didn’t do much for morale; company meetings regularly spiraled down-

CLICK HERE to purchase this book now.



A PRAGMATIC POINT OF VIEW 4

ward into shouting matches. Some developers avoided the situation by
hiding in their offices all day long. All in all, it was a bad place to work.
Everyone knew there were major problems, but nobody could fix them.

The second shop was in much better shape. With about the same num-
ber of developers, they were working on three major products simul-
taneously. These projects had their code in a source code manage-
ment system; the code was automatically rebuilt and tested whenever
it changed. The entire team had daily meetings that were short, pro-
fessional, and effective. Every developer knew what features to work
on because each project had a master plan. They followed the quarry
worker’s creed: We who cut mere stones must always be envisioning
cathedrals [HT00]. That is, everyone was able to apply their own exper-
tise and craft within the context of a larger, coordinated framework.
Their products shipped on time with a minimum of fuss and bother
and were stable because they were well-crafted.

The most amazing thing about these two companies is that they’re the
same shop, separated by less than six months and the application of
the principles in this book. (But you had already guessed that, hadn’t
you?) After the turnaround, the CEO said we had introduced an “atmo-
sphere of excellence” and that he “didn’t even recognize the place.” This
company is one of the more recent places we’ve worked, and we brought
the principles in this book to bear in almost the same form as we’re pre-
senting them to you. The transformation we went through there is one
of the reasons we decided to write this book for you.

We’ve discovered and applied these ideas at companies of all sizes, from
a four person startup to SAS, the largest privately owned software com-
pany in the world. Frankly, we’ve been amazed at how well these prin-
ciples have worked at companies of all sizes.

Think of these ideas as the foundation to a great product. You’ll reap
benefits for the rest of the product’s life cycle if you’re willing to invest
the time up front to get your infrastructure set up properly. Of course,
it’s easier to start a project with all of these practices in place. Like a
cracked foundation of a house, some can be patched easily while others
are deeply structural and can be a lot of work to go back and fix.

While you may be in the middle of a project currently, it’s never too late
to start good habits. You can introduce many of these ideas into an
existing project and reap immediate benefits, and we’ll cover ways to
do that in the last chapter.

CLICK HERE to purchase this book now.



ROAD MAP 5

Infrastructure

Process

Write & 
Run

Tests

Track
Features

Script
Builds

Track
Issues

Continuous
Builds

Version
Control

Code
Reviews

Technical
Lead

The List
Daily

Meetings

Code
Change
Notifier

Propose
Interfaces

Connect
Interfaces

Add
Functions

Refactor,
Refine,
Repeat

Propose
System
Objects

Techniques

Ship It!

Figure 1.1: How to build a great product

1.3 Road Map

We have arranged our ideas into three main areas: infrastructure, tech-
niques, and process (see Figure 1.1 ). These areas directly affect your
team’s ability to consistently deliver the product your customers want.

Infrastructure

In Tools and Infrastructure we cover the software tools that will make
your life and your team’s life easier. For instance, a good source code
management system keeps the “crown jewels” of your project—your
source code—safe and sound. An automated build system gives you

CLICK HERE to purchase this book now.



ROAD MAP 6

repeatable builds anywhere and anytime you like. And we discuss how
to keep track of the bug reports, feature requests, and other issues that
come up the moment you let the rest of the world see what you’ve been
developing. Finally, we show you how a good test harness can give you
confidence that your code does what you think it does.

Techniques

In Pragmatic Project Techniques we cover specific practices that you and
your team can use every day to “work smarter, not harder.” We tell you
how to put a tech lead on your team to insulate you from the out-
side world and to get you only the information you need to know. Use
The List by yourself to organize your own work and teamwide to keep
the group on-track. Is your team not communicating? Can’t tell who’s
doing what? Start holding Daily Meetings to keep everyone on the same
page while sneaking in some opportunities to pick teammates’ minds.
Short code reviews help leverage the expertise of your co-workers and
let you share a little of your expertise too. And once the review is over,
show the rest of your team what you’ve done with code change notifi-
cations.

Process

No book on software development would be complete without a presen-
tation of the authors’ pet development methodology, and this one is no
different. So we humbly added a plug for what we call Tracer Bullet
Development. When you use Tracer Bullet Development you create an
end-to-end working system that’s mostly stubbed out and then fill in
the missing parts to make it real. It’s good for splitting large projects
apart and letting teams work on the pieces in parallel, and it also lends
itself nicely to automated testing.

Common Problems and How to Fix Them

Finally, we present common problems—and danger signs—that arise
and offer real-world advice on how to solve them using the tools, tech-
niques, and processes we talk about in the rest of the book. A lot
of these problems we encountered ourselves over the years. Some we
solved, others we figured out how to solve after the fact (hindsight is
20/20, after all. . . ). We hope our experience will keep you from making
the same mistakes we did.

CLICK HERE to purchase this book now.



MOVING ON 7

What’s Missing?

People and requirements gathering are two areas that we didn’t include.
Good people trump tools, techniques, and process as the most impor-
tant part of a project; however, assembling and keeping a great team
is a subject worthy of its own book (or a series of books!). Instead, we
focus on ways to leverage and grow the skills your team already has.

Similarly, learning about product requirements is another deep sub-
ject. There are many ways to collect requirements, ranging from note
cards to complicated systems full of checks and balances. Rather than
attempt to address another large issue that we couldn’t do justice to
in a single chapter, we chose to present ideas that are flexible enough
to handle changing requirements, no matter where you get the require-
ments from. The ideas in this book can accommodate the project whose
requirements never change as well as the project whose requirements
are constantly shifting. So you can use these ideas whether you get
your requirements list from a small stack of 3x5 cards or a 10,000-
page contract.

We’ve tried to keep the discussions generic enough that you can use
them in any shop and with any technology. That’s why we didn’t add
sections on installer technologies or code optimizing tools.

1.4 Moving On

Our hope is that you will use the ideas and habits presented here in
the spirit in which they were forged (i.e., pragmatically). Read them,
and try them out. Keep what works in your environment, and discard
the rest.

Stop after each section to determine whether you’re using the idea. If
you aren’t, then read How Do I Get Started? If you are using the idea,
read Am I Doing This Right? or Warning Signs to make sure you’re on
the right track.

1.5 How Should I Read This Book?

How you approach this book depends on your role in the project. Nat-
urally, when you work as a developer or tester, you will approach the
book differently than your team lead, but you can get a lot of value from
this book when working in either role.

CLICK HERE to purchase this book now.



HOW SHOULD I READ THIS BOOK? 8

You Are a Developer or Tester

If you are a front-line practitioner (or implementor), read this book from
front to back. Each section contains practical ideas you can use daily
as an individual contributor or a team leader. Often developers skip
sections with a team focus if they are not team leads. That’s a really bad
idea. Most team environments are a collection of what team members
have requested or have had direct experience doing. Put yourself in
a position to know what tools, techniques, and processes can make a
positive impact in your shop and be able to present solid reasons for
each request you make. Many times we’ve heard developers argue for
a given tool or technique because “it’s the right way.” This argument
never sways management and is, in fact, counterproductive. Before
you present an idea, be sure to understand the benefit to the team.

Which request would sway you? “We need a source code management
system from Acme Code Systems because it’s a good thing and everyone
is using it. It’s a best practice!” or “We should have a source code man-
agement system because it will let us access past releases, roll back
specific code changes and allow our developers to work on parallel code
trees safely. It’s the easiest way to safeguard our company’s develop-
ment investment. Acme Code Systems makes a great product that we
should look at. Joe and I have been using it for several months now
and it has made a real difference in our productivity. Here’s a list of
how it’s helped us.”

You Are a Project Team Lead

Use this book to perform an audit of your team’s environment and
work flow. (You do this from time to time already, right?) Take the
opportunity to reexamine how your team works. Do you have a basic
set of tools that cover your foundational requirements? Are your team’s
techniques building solid product and solid developers? Do you have a
clean, well-defined process?

As you review how your team is working, be sure to consider each
item’s relevance. Are you using tools or practices that once fit but are
no longer effective?

Did you hear the story of the woman who always cooked ham by cutting
off and discarding a third of it first? When asked why, she said that was
how her mother always cooked hams. When asked, her mother said
that was how her mother had always cooked. They finally confronted

CLICK HERE to purchase this book now.



HOW SHOULD I READ THIS BOOK? 9

Grandma, who admitted that when she was young, she didn’t have a
pan big enough for an entire ham, so she always just cut the end off,
and it became a habit.

Be sure that your habits are formed out of your needs today, not last
year’s project or Grandma’s eccentricities.

Be sure that your team has access to the tools, techniques, and pro-
cesses that it needs today. Knowing what works and why is the only
way you can effectively guide your team. Each section has tips to help
you get started and warning signs to alert you to problems before they
get out of hand.

You Are a Manager (or Involved Customer)

Upper-level management can do a great deal to influence how teams
work simply by asking for the right information. This book can show
you some of the key components your teams should be using and what
types of questions you should be asking. For example, when you ask
for a list of fixes in the last release, you are saying that you want that
information tracked. As you read each section, look for deliverables you deliverables

can ask your team leads to submit that can guide them in the direction
you want them to work. Be very careful with these requests, though;
you don’t want to create bureaucratic busywork for the teams. You
want to guide with carefully placed requests.

Since you are removed from the day-to-day work, you will probably
skim over the How Do I Get Started? sections, but you’ll want to under-
stand the what and why of each topic.

Individuals Make a Team

Nearly every concept in this book has been used by team members,
entire teams, and managers. A team member is often the one who first
uses the practice, proves its worth, and then shares it with the team.
We have done this repeatedly ourselves and seen others do it, and you
can do the same thing. Here’s a story about someone who did just that.

The Rapid Growth of Agility Support Systems at CafePress.com
by Dominique Plante and Justin McCarthy

When we started working at CafePress.com early last year, management
was enthusiastic about adopting agile practices, but the development
environment lacked basic support systems required to make changes
with confidence.

CLICK HERE to purchase this book now.



HOW SHOULD I READ THIS BOOK? 10

Enter the Create and Buy project—an extension of CafePress’s core
offering that allowed individuals to easily design and buy customized
merchandise (t-shirts, mugs, etc.). This project was the first attempt at
introducing an explicit business and persistence layer in addition to the
web presentation layer. Most of the business and persistence tier was
designed test first using the NUnit framework for writing developer tests.
Simultaneously, we introduced NAnt for repeatable compilation and
deployment of classes used in the web tier. Next, we wired up
CruiseControl.NET for continuous integration (i.e., compile and run tests)
upon every check-in to our Subversion code repository. For the finishing
touch, we commissioned Chicken Little, a small but highly visible (and
audible!) workstation running CCTray for build status notification.

The interoperability between Subversion, CruiseControl.NET, NAnt, and
NUnit helped us evolve a hospitable collaboration environment without
contentious vendor analysis or purchasing decisions. Moreover, these
support systems were developer initiated, never because of explicit
management requests.

Since we started doing all of this automation, our team has grown, and
many new team members have advanced the maturity of our test suite
and project automation tools. Some recent upgrades include 100 percent
scripted development environment creation, as well as automated test
environment deployment; although, looking back, nant test is still the
most frequently used target.

Before the advent of these tools, most of our daily communication
consisted of broadcasting questions about build failures or notifications of
API changes. Now that CruiseControl.NET handles our “buddy builds,”
developers understand and honor a commitment to keeping the build
pristine. Nobody enjoys a work stoppage because of an errant check-in.
With the support systems in place, our conversations naturally trended
toward software design and implementation and away from venting our
environmental frustrations.

All of our early efforts aided the immediate delivery of tested code, and
our initial investment continues to pay dividends every time Chicken
Little squawks!

We feel this is the best way for change to occur. We would never dis-
courage a manager from introducing change, but we find the best and
most applicable changes come up from the trenches. The people doing
the work usually have a good idea about what specific problems need
to be solved.

So we say, “use the book” whether you are a manager, a developer, a
tester, or a tech lead. Find the parts your shop (or your own personal
work) is missing, and see how it can make your life a little easier today.

CLICK HERE to purchase this book now.



HOW SHOULD I READ THIS BOOK? 11

Joe Asks. . .
What Is Agility?

Agility refers to a software team’s ability to adapt to chang-
ing conditions quickly. This sometimes means redesigning to
accommodate changing requirements, and other times it
means responding to new bugs quickly or adopting new tech-
nologies quickly. Generally, agile teams are more concerned
with results than bureaucracy. You can read more about agile
software at http://www.agilemanifesto.org/.

The following quote from the web site sums up the agile point
of view pretty well:

“We are uncovering better ways of developing software by
doing it and helping others do it. Through this work we have
come to value

• Individuals and interactions over processes and tools

• Working software over comprehensive documentation

• Customer collaboration over contract negotiation

• Responding to change over following a plan

That is, while there is value in the items on the right, we value
the items on the left more.”

CLICK HERE to purchase this book now.


