
Extracted from:

Ship It!
A Practical Guide to

Successful Software Projects

This PDF file contains pages extracted from Ship It!, one of the Pragmatic Starter Kit
series of books for project teams. For more information, visit
http://www.pragmaticprogrammer.com/starter_kit.

Note: This extract contains some colored text (particularly in code listing). This is
available only in online versions of the books. The printed versions are black and white.
Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2005 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any
means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.



DEVELOP IN A SANDBOX 16

1 Develop in a Sandbox
How do you share code with your teammates? A surprising number
of teams never answer this question explicitly and instead just get a
big, old shared disk drive, with all of their source code and other files
lying around. Any act by any developer—from simply editing a file to
compiling code—will instantly affect every other developer on the team.
Their life is now filled with constant, unpleasant surprises.

It’s just like a crowded kitchen on Thanksgiving, with everyone throw-
ing something else into the mix, and it makes for a pretty frustrating
work environment. While many teams continue to operate this way,
you can take a safer and more professional stand. This will have a
deep effect on your tools and infrastructure, so you need to get this
straight right from the beginning.

There’s only one fundamental rule to keep in mind: isolate others from
the effect of your work until you are ready. That’s why we call this
sandbox development: every developer has their own sandbox to play
in without disturbing other developers.

That may sound easy enough, especially in terms of isolating source
code (see Practice 2, Manage Assets, on page 19), but the real trick
is to remember that it applies to all resources: source code, database
instances, web services on which you depend, and so on.

Your own development machine should be designed to contribute to
your own productivity.1 It should not contribute anything to the global
build process—no one else should have to rely on your machine directly
for anything.

But how do other developers get your code? Code is shared via the
repository. Think of the repository as a big shared disk, but one that’s repository

managed by a librarian. The librarian ensures that everyone has the
right version of any file (or other resource) that they need and that
everyone can work without clobbering each other. Every developer uses
a software tool to check in and check out files (just like a real book
library) so they can work on them locally.

On your own developer machine, you edit local copies of source code
files, compile, build, and test in splendid isolation from your team-

1This means it’s perfectly okay for different developers to use different code editors or
even Integrated Development Environments (IDEs).

CLICK HERE to purchase this book now.



DEVELOP IN A SANDBOX 17

Build Machine

Developer PCs

Repository

Released
Product

Figure 2.2: Sandbox Development Setup

mates. If you need to use a database, a web server, or any other
resource while developing, make sure that you’re the only one using
it. When you’re satisfied that you’re finished with a piece of code, you
check it back into the repository.

But then how do customers get the finished product? In addition to
the developer machines and the repository, you have a build machine. build machine

The build machine is an unattended server that simply gets all of the
latest source code from the repository, builds, and tests it, over and
over again. The result of this build is the product release. release

Most of the time, this release will just be thrown away after each build,
but every so often this is the pile of bits that you’ll ship to your cus-
tomers and end users. It’s built the same whether it’s the usual 10:00
a.m. build or it’s the final release after months of toil and sweat.

It’s always consistent, because the build machine is an independent
entity: it never looks at individual developer machines for any reason.
The input to the build is the repository, and the output from the entire
process is from a designated build machine. This system works great
as long as developers don’t cheat.

TIP 2

Stay in the sandbox

CLICK HERE to purchase this book now.



DEVELOP IN A SANDBOX 18

Joe Asks. . .
Where Do Releases Come From?

Your build machine may or may not be the box where you build
releases—the code that you ship to your customers. However,
the build box and the shipping product build box both use the
same scripts, use the same repository as their source, and so
on.

Some of the differences might be that a shipping build creates
a new branch or tag within the repository to mark a known,
released set of code, or perhaps that the shipping build wraps
the code in installers for various platforms.

Sometimes it’s hard to “stay in the sandbox,” especially if database
licenses or web server ports are in short supply. You may be able to
use a single database but create separate instances for each developer.
Or, if forced to use one database with one instance, you may be able to
partition the data space (for example, Joe is assigned test account data
for accounts 1000–1999, and Sue is assigned accounts 2000–2999,
and so on). This still leaves you open to risk of interference, but it’s
better than nothing.

For other resources such as web services, every developer should have a
clear shot at their own instance (whether they are providing the service
or testing against it).

With this basic idea of isolation in mind, let’s take a look at some of the
tools and other bits of infrastructure you’ll need to achieve the sandbox
effect.

CLICK HERE to purchase this book now.



WHEN NOT TO EXPERIMENT 52

9 When Not to Experiment
Never have a vital part of your product cycle (such as the build system)
written in a niche or noncore technology, especially if only one devel-
oper knows it. Use a technology that anyone in the shop can configure
and maintain. Technology playgrounds are fine, and necessary for pro-
fessional development, but this isn’t the place for them. Experiments
must exist outside of the critical path.15

In one startup, the build script had been written in a new language; it
was a learning project for the developer who wrote it. Worse, it was a
general-purpose scripting language, not a build system. It contained
more than 25 pages of spaghetti code that used every possible obscure
language feature. Needless to say, the code was incomprehensible.
It featured hard-coded dependencies on one developer’s machine, on
specifically setup network drives, and on specific versions of software
components. The program was just a mess.

Never let a critical technology (like your build system) be created as a
technology experiment. Use a tool designed for builds to create your
builds, not the cool new technology that a team member wants to learn.
There are plenty of noncritical areas for technology learning to take
place. Never create automated tools that run on only one machine.
Never hard-code network drive dependencies. Put everything you need
in your SCM system, and the network drives become unimportant.

For example, if you are working in a Java shop, consider using Ant as
your build script. Ant’s whole purpose in life is to build Java programs,
so it’s a lot easier to write Java build scripts in Ant than in a language
such as Python. Python is a great language, but it doesn’t know any-
thing about Java. Leverage your existing expertise when selecting your
build system.

You gain a lot by adhering to this rule; it makes maintenance of the tool
much easier. Anyone in the shop will be able to work with the technol-
ogy and make adjustments. Also, by requiring experience, you avoid
getting caught by a technology that looks great for a given situation but
actually isn’t.

15Your project’s critical path contains anything that can slow down your project. Your
SCM system and build scripts are good examples of items in your critical path. When
they break, everything else stops as well.

CLICK HERE to purchase this book now.



WHEN NOT TO EXPERIMENT 53

But This Stuff Is Sooo Cool!

If you think a certain technology should be the exception to
the rule (never make core technologies an experiment), then
spend the time and money to get everyone trained. Don’t
just bring in the new technology and assume it’s so great that
everyone will learn it. It never happens that way. Use feed-
back to make sure people learn what you expect them to
learn. Remember that such feedback reflects the talent of the
teacher, not the stupidity of the student.

Only experience can tell you about a given technology’s shortcomings.

One other danger worth mentioning involves letting any code wizard (or
build script) do anything for you that you don’t understand yourself. It’s
fine to let a tool handle details for you, but only if you already under-
stand those details. If you don’t, you’ll be completely lost when some-
thing breaks. “Don’t use wizard code you don’t understand” [HT00].

TIP 13

Keep critical path technologies familiar

CLICK HERE to purchase this book now.



WORK FROM THE LIST 56

10 Work from The List
Many times we use a to-do list to track our work. The List formalizes
the to-do concept so we can use it in a team setting.

In the past, when working on smaller projects, we used legal pads and
notebooks to track our work. The List began as our personal to-do list of
things we didn’t want to forget. As we transitioned into more leadership
roles, The List we were using began to contain teamwide items and
paper became inefficient. After you show other team members The
List enough times, you start looking for alternative ways to record and
share The List. A white board works fine for a small group, especially in
a large room with cubes (can you say startup?). These days we tend to
use web pages or wikis. Some people use a spreadsheet1 for The List.
Everyone can access a web page, and it’s easy to edit as well.

The List is how you set your daily and weekly agendas. You order your
work with The List, as does the entire team (it’s fractal!). When you get
swamped, overwhelmed, or scattered, you come back to The List and
use it to regain your focus. If you get stuck on a tough problem and
you need to step away for a while, The List gives you a readily available
set of items to use as filler. This ensures that you’re working on the
most important item, rather than the proverbial “squeaky wheel.”

Why You Need The List

How often have you worked on a project where everyone was staying
busy but the product was never complete? Important features were
forgotten, team members were held up waiting for features that weren’t
done, and developers were stuck, not knowing what to work on next.

Someone needs to write down all the features, sort them by priority,
and let team members grab their next job from the top of The List.
You create a central point of organization for your team without the
overhead of most heavyweight processes.

Team members that have The List never run out of work. When they
finish their current task, they check out The List, pick a feature within
the top-priority items, and go to work. Developers can pick their next

1Joel Spolsky uses an Excel spreadsheet to track his work list, and he has
a lot of good reasons that you should also use something just as simple. See
http://www.joelonsoftware.com/articles/fog0000000245.html

CLICK HERE to purchase this book now.



WORK FROM THE LIST 57

Joe Asks. . .
What’s a Wiki?

A wiki is an easy way for people to create web pages. Wiki
pages are written in a simple markup, not HTML, so anyone can
add content. Wikis are designed to encourage group collabo-
ration.

A Wiki page looks like any other web page initially, except that
there’s an “edit this page” link at the bottom. Clicking on that
link puts the content of the current page in a simple HTML text
edit box, so you can make changes to page very easily.

Visit http://www.wiki.org for more information.

CLICK HERE to purchase this book now.



WORK FROM THE LIST 58

job so they can still pick the work that is most interesting to them, but
the tech lead knows that the features that are the highest priority are
in progress or next on The List.

Since all developers are at different skill levels, the tech lead makes
exceptions as needed, but generally, no second-priority item can be
touched until the first-priority items are complete.

The List (as a team tool) gives management and customers something
concrete to look at and evaluate the product before the time is invested
adding the features. It’s always cheaper to remove a feature before
you’ve spent a week adding it! How many times have you finished a
product and then had the customer say, “The product is okay, but I
would have really loved it if you had put in feature A instead of X, Y
and Z”? You create a piece of lightweight documentation that you can
show people early in the development cycle when you use The List.

The List also provides a great deal of agility to your team. The List
assures that you’ve done some basic design work up front by ensuring
that you’ve decomposed your product into features and features into
list items, as needed. Also, because your product is separated into
features, you can drop out items or add others as needed.

Most companies have an individual or two who will rush in and demand
to know why feature X was not finished or is not being worked on.
(Their viewpoint: isn’t the feature that I care about the most important
one?) With a defined and prioritized set of tasks in hand, you can show
them what features you’re developing and why they are more important
to the core product. This explanation is usually enough to satisfy the
person and show them that you’re doing useful work.

Your comprehensive list of features with priorities that make sense is a
confidence builder for the team, for management, and for other teams
that might depend on your efforts. Having The List several items deep
demonstrates you are thinking ahead and planning your next steps.

TIP 14

Work to The List

How Should I Use The List?

You can use The List for your own work or for your entire team. Either
way is easy and very effective. We use it both ways.

CLICK HERE to purchase this book now.



WORK FROM THE LIST 59

The List As an Organizational Tool

Through the years we’ve worked in a variety of roles, but we’ve
rarely worn a single hat. As a general rule we, like most people,
end up with lots of different jobs to do and very little time to get
them done. When we try to juggle all the work in our heads,
we tend to spread our time so thin on a lot of tasks and end up
getting no substantial work done.

Our solution is to use The List as a personal organizer as well.
While we always use the group list for the entire team, we’ve
found that having our own copy of what we have to do is very
helpful. Make a list each morning of what is on your plate and
then prioritize it. At the end of the day, review what you did (or
didn’t) finish. Decide if you didn’t get everything done because
you were overly optimistic about what you thought you could
get done or because you were distracted during the day. For a
more complete discussion of using your own list to order your
personal work list, get a copy of The Seven Habits of Highly
Effective People by Stephen Covey.

Getting started with your own copy of The List is easy. First, create a
list of every task you are working on (or have pending). Then, with your
tech lead, assign a priority to each item. Finally, put a time estimate
with each item. Don’t worry about getting the time estimates perfect
the first time, you’ll improve over time.

Getting your team started on The List isn’t hard either if your product
is already well-defined. It’s actually a great group activity that can help
the entire team understand the project’s overall direction.

1. Put every feature that you are adding to your project on a white
board. This can take a while and often takes more than one white
board.

2. Assign priorities to each feature. Be sure to include the proper
stakeholders (management, customers, etc.) in this process. It’s
ideal to have your entire team in on the process, but if you have
strongly opinionated team members, it may be smoother to just
include the tech lead and the stakeholders.

3. Rewrite all of the features, sorted by priority.

4. Attach time estimates to each item.

CLICK HERE to purchase this book now.



WORK FROM THE LIST 60

Figure 3.2: The List on an intranet web page

Until the current top priority items are completed, no one can work on
the lower-priority items. This ensures that all the priority-one items
are in progress before any of the priority-two tasks are touched.

As you can see, getting started using The List is fairly easy. However,
to be effective, The List must adhere to a number of rules. It must be
all of the following:

• Publicly available

• Prioritized

• On a time line

• Living

• Measurable

• Targeted

Next we’ll look at what each of these rules means, and what it means
to us and our team.

CLICK HERE to purchase this book now.



WORK FROM THE LIST 61

Joe Asks. . .
What’s RSS?

Depending on who you ask, RSS stands for either “Rich Site Sum-
mary” or “Really Simple Syndication” or “RDF Site Summary.” It’s
a way of sharing changes to content. It’s very popular with
web sites with dynamic content (like news sites or build status).
When a web site shares their changes using RSS, it’s called an
RSS feed. An RSS feed is an XML file that lists changes or new
content.

An RSS reader is a program that checks on all the RSS feeds
you’ve subscribed to and shows you the new stuff. RSS feeds are
made available on web servers, so an RSS reader is really just
looking at a file on a web site and showing you the changes.

RSS readers are a really convenient way to get your news in a
digest format. They collect news until you are ready to read it.

Publicly Available

Your team’s List must be publicly available. A secret list doesn’t help
collaboration. Put The List on your white board or web site, make an
RSS feed for it, or otherwise make it very easy and obvious for peo-
ple to read. Keeping The List in front of you helps you maintain your
focus. It gives you an easy review of pending work that you can scan
quickly—especially when you’re scattered or distracted during a hectic
day. Keeping it publicly visible helps your manager keep track as well.

Prioritized

The List must be prioritized. It’s very important to recognize the differ-
ent types of features involved in a product: necessary features, desired
features, and fluff features. You must make these distinctions when
prioritizing The List, or you will be wasting your time. There will always
be a core set of tasks that must be accomplished before the product
can ship; these are the top-priority features. For instance, these might
include the login screen, the installer, or a working database. You
simply cannot ship your product without them. Having a new and

CLICK HERE to purchase this book now.



WORK FROM THE LIST 62

Figure 3.3: An RSS newsreader

improved background color for the About dialog box would probably be
considered be a fluff feature.

Never, ever, bypass the priorities you’ve set. Finish all the higher-
priority items before working on lower-priority items, unless there’s
good—and widely publicized—reason to temporarily put one on hold.

Time Estimates

The List always has a time line associated with it. The time line should
not be set in stone, but it should include estimates for how long each
item on the list should take to complete. Then, as you complete an item,
record how long it actually took and pay attention to the difference.

Over time, you—and everyone on the team—will get very good at esti-
mating how long a given task will take. After a few iterations, the tech
lead should be able to create rough project time lines based on individ-
ual team member’s lists, and the project manager should be able to do

CLICK HERE to purchase this book now.



WORK FROM THE LIST 63

the same thing. There are no wrong answers when estimating. Some
estimates will be closer than others. Don’t worry about how much you
miss an estimate at first. Like a muscle, this skill grows as you use it.2

Living

To be effective, it must be a living list. Your team must be able to adapt
to change. The tech lead will adjust feature priorities as the project
progresses; new features will appear while others fade away. Priorities
change. This is a Good Thing! It can be frustrating until you get used
to it, but remember that your company is trying to be competitive in
a changing marketplace. They depend on you to be flexible as well.
Instead of fighting it, work with it.

In fact, changes to The List usually mean that your customers and
stakeholders are looking at the project and are actually giving mind
share—and valuable feedback—to it. Most customers wait until the
project is finished to look at your work, but by then it’s too late. It’s
always better to get feedback earlier, even if it might be frustrating to
see The List frequently change. If The List hasn’t evolved in a while, it
probably doesn’t reflect the current priorities of the project.

Measurable

In order to be effective, every item on The List must be measurable.
After all, you must be able to determine whether the item is done if you
want to mark it off your list.

This criteria eliminates vague items like “performance improvements”
but encourages “Make login complete in less than five seconds” or “Gen-
erate report X in less than ten seconds.” By creating a goal with a binary
state, you make it possible to tell when it’s done. An open-ended goal
like “performance improvements” can last the life of the product and
end up being a black hole.

If you currently have items on The List that are not measurable, take
the time to look at what the real requirement is. Did the item come
from a request for faster reporting or faster startup times? Break down
the item into defined, binary items, and then get the person who asked

2If your team is having trouble with estimates, try to limit the choices; for instance,
every estimate must be one day, one week, two weeks, or four weeks. Allow no other
choices at first.

CLICK HERE to purchase this book now.



WORK FROM THE LIST 64

Feature-Boxed Iterations Instead of Time-Boxed Iterations

The problem with time-boxing is that we ship product features,
not calendar days, to our customers.

When your team is using The List, and all the items are ordered
by their priority, your releases become feature boxed, not time
boxed. Management can look at the The List and draw a line
beneath the features that they need in the next release. You
then add up the time estimates for those features and calcu-
late the release date. Your individual product and industry will
dictate how long to schedule for your internal testing and beta
programs, but you can concretely schedule your development
code freeze.

When your sales team decides that a given feature must be
included, that feature’s priority on The List can change, and
it can migrate into the shipping features. However, the time
associated with the feature must be added to the ship date.

This way of working gives your sales force and management
team a clear and defined way to understand the trade-off
between specific features and time. They are no longer trying
to make decisions about ship dates and features in a vacuum.
Instead of trying to abstractly weigh features that take more
time, they are weighing two specific features, with specific time
frames.

We feel that this approach gives you the product when it’s
ready, as soon as it can be ready, instead of letting your com-
pany dictate an arbitrary release date that you miss. Our indus-
try is famous for missing deadlines, and no wonder given the
way we write software. Instead of trying to push an arbitrary
feature set into an arbitrary deadline, companies should let
their development team tell them what they can do! If the
developers can’t hit the mark that sales wants, is it better to
find out now and adjust your plans or find out later, when you
miss the deadline? And if the development team can hit the
mark early, wouldn’t it be nice to know so that the company
can add features to the release or get it out the door to cus-
tomers sooner?

The first time you release a product this way, management will
be nervous. The second time, they’ll be relaxed. The third time,
management will have learned to trust their software teams to
deliver what they promised!

CLICK HERE to purchase this book now.



WORK FROM THE LIST 65

Joe Asks. . .
What’s a Code Freeze?

A code freeze is when your code base stops changing. During
your development cycle, code is fluid, like water, and changes
constantly. However, after the code freezes, the changes stop.
Only major bug fixes can be made after a code freeze. Feature
additions and minor bug fixes are not allowed.

Oftentimes a “code freeze” degrades into more of a “code
slush” as ill-considered changes seep into the release.

for the original item to look at the items. This review will make sure
that you are actually addressing the customer’s need.

If an item can’t be translated into measurable goals, then bump it to the
lowest priority and get working on the higher-priority items. Removing
the item entirely can be a mistake if the original idea for the item was a
good one; it simply needs to be boiled down to the measurable pieces.

Targeted

You’ve probably noticed by now that we have talked about both team
lists and individual lists. Each type of list is very important and must
be targeted at the proper audience. The List for your team will be a
lot larger and have all the outstanding work for the entire project on
it. Your individual version of The List will contain fewer team items
(sometimes only a single item for the project), but as soon as you are
done, you copy an item from the team’s list and put it on yours.

Although it is very simple, The List is a powerful tool on many levels. It
keeps you organized and on-track and keeps your management chain
informed and involved in your work direction. Creating and prioritizing
The List makes you think through your work and map out your next
steps. Any great pool player will tell you that they have their next eight
shots planned out; so will any great developer!

CLICK HERE to purchase this book now.



WORK FROM THE LIST 66

Your List Looks Like This

Here is an example of what your personal list might look like, sorted by
priority:

1. Add a new report that displays widgets produced per day.

2. Add a new report that displays widgets produced per employee.

3. Look at bug #12345 (widgets per month shows zero when viewing
five-month report).

4. Install development tools on my new workstation.

5. Check out cool new WhatChaMuhCallIt-Reports. . . might make a
good addition to the next edition’s report system.

Notice that the most important items are at the top. In this case the
new features are more important than the bug fix, but that’s not always
the case. Also, the computer upgrade and research project are at the
bottom of the list. These items are for filler when you get some down-
time (perhaps you are waiting on someone else?) or you need a break.
It’s important to have the filler items on the list so that lower-priority
items don’t get forgotten.

How to Get Started

1. For an entire day, write down every task as you work on it (this
will be your “finished” list).

2. Organize whatever daily task list you do have into a formal copy
of The List.

3. Ask your tech lead to help you prioritize your work and add rough
time estimates.

4. Start working on the highest-priority item on The List—no cheat-
ing! If some crisis forces a lower-priority item higher, record it.

5. Add all new work to The List.

6. Move items to your finished list as you complete tasks (this makes
surviving status reports and “witch-hunts” much easier).

The act of creating The List forces you to organize and prioritize your
work. Just as keeping a diary helps you think through and under-
stand what you’ve been doing, The List helps you sort out your current
workload but in a fairly high-level, lightweight way.

CLICK HERE to purchase this book now.



WORK FROM THE LIST 67

Review The List every morning. Update it whenever new work pops
up. . . especially the last-minute crisis tasks; you’re likely to forget about
those when someone asks you what you on earth you did all last week.

You’re Doing It Right If...

• Is every one of your current tasks on The List?

• Does The List accurately portray your current task list?

• Did the tech lead or customer help you to prioritize The List?

• Is The List publicly available (electronically or otherwise)?

• Do you use The List to decide what to work on next?

• Can you update (and publish) The List quickly?

Warning Signs

• You fail to add tasks to The List because you’re “too busy.”

• More time is spent updating The List than completing the tasks.

• It takes weeks for team members to complete individual items on
their personal lists (hint: the items are too big).

• The List is updated less than once a week.

• Priorities on The List don’t match “real” priorities.

• The List is a closely held secret, not visible to anyone outside your
team.

• In addition to the team’s list, there are other publicly available
versions that differ.

CLICK HERE to purchase this book now.


